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Abstract

With the urgent need to document the world’s dying languagssimportant
to explore ways to speed up language documentation effonis.promising
avenue is to use techniques from computational linguistieaitomate some
of the process. Here we consider unsupervised morpholaggganentation
and active learning for creating interlinear glossed t&&f{) for the Mayan
language Uspanteko. The practical goal is to produce dyt@ahotated cor-
pus that is as accurate as possible given limited time forualeannotation.
We discuss results from several experiments that suggastithindeed much
promise in these methods but also show that further devedopisinecessary
to make them robustly useful for a wide range of conditiortstasks. We also
provide a detailed discussion of how two documentary listguperceived
machine support in IGT production and how their annotatierfggmance
varied with different levels of machine support.
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1 Introduction

With languages dying at the rate of two each month (Crys@002, there
is an urgent need to create linguistically detailed recofdsndangered lan-
guages. Broadly outlined, documentation of a languagenksegith the devel-
opment of a collaboration between a community of speakettssofanguage
and an individual or group, either within or outside the commity, interested
in pursuing the work of documenting the language. The nexjests collec-
tion (by recording) of audio/video data and then transipof the recorded
data. This often includes developing an orthography forléinguage. Ide-
ally, some portion of the transcribed texts is also traeslanto a language
of broader communication, possibly followed by a stage mdiistic anal-
ysis and description. This analysis stage involves detatleme-consuming
linguistic annotation of the transcribed texts. This is #tege that we are
interested in supporting with computational assistante. resulting collec-
tion of data and analyses can then be used to create a vafigtgterials,
including grammars, dictionaries, language teaching eathing materials,
spell-checkers, websites, and other community-oriergeduage resources.
Ideally, future access to the language data is ensured efigvarg, publica-
tion, and other methods of storage and/or dissemination.

Computational linguistics can play an important role inueidg the work-
load in such efforts: models that learn from data can be ussgded up the
documentation process and to pinpoint interesting exasnpleis paper de-
tails a set of computational strategies for aiding langusmmimentation and
experiments that test the effectiveness of those stratégia realistic lan-
guage documentation context. Specifically, we examine fleeteveness of
a range of computational learning approaches, from unsigeet (inducing
structure from raw text) to fully-supervised (learningrfrgrevious human
annotation), for assisting the productionioferlinear glossed texiGT) for
the Mayan language Uspanteko.

IGT is a multi-level format for presentation of linguistiath and analy-
sis used in nearly all documentary work. It serves as thel foziaat of the
interplay between analysis and documentation and grestiljthtes later ex-
ploration and analysis of the language. However, IGT ariiooia are time
consuming to create entirely by hand, and both human anddimlaesources
are extremely limited in this domain. Thus, language doataten presents
an interesting test case for computational assistancestgeronsistency and
maintainability of analyses and to speed up annotationé@ahlife context of
great import. There are a number of barriers and opporamiiti attempting
to do so. In this paper, we specifically address:

1. Standardization and representation (section 2)The data created by
most documentation projects uses idiosyncratic formats wesually
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contains errors that require considerable cleanup befag ¢an be
processed by computational tools. The lack of a single stahfdhrmat
for IGT means that representations and structures used dprafect
are unlikely to be compatible with those used by other ptejdinit-
ing the reusability of painstakingly annotated data. Weuls cleaning
up an existing corpus of Uspanteko for our experiments andexting
it to IGT-XML (Palmer and Erk, 2007).

2. Analysis. IGT involves morphological segmentation, translation of
stems, understanding the contribution of individual memples to the
meaning of the sentence, and labeling the glosses of stethman
phemes. We test whether some of these decisions can be made mo
efficiently with computational help for morphology and ¢gow).

(a) Morphology (section 3).Words are segmented into their stems
and affixes. We discuss unsupervised methods for idengjfyin
concatenative stems and affixes from raw texts as a presioges
step for IGT creation (Moon and Erk, 2008, Moon et al., 2009).

(b) Glossing (section 4)Stems and affixes are given labels that in-
dicate their grammatical function. We summarize and exmmand
our previous work employing active learning and semi-autt=d
labeling to reduce the cost of annotating these labels @alm
et al., 2009, Baldridge and Palmer, 2009).

3. Interaction of linguists with machine decisions (section b We con-
sider the influence of machine decisions on documentaryistgwho
are developing their own analysis of a language with cormntjmutal
support. We consider this for gloss labeling for Uspantekb vespect
to a documentary linguist who is an expertin the languagkr@®aan
Pixabaj) and one who had no prior experience with it (Eric ghetl).

We also argue that language documentation raises integestid unique
challenges for computational linguistics and languagbretogies. Textual
data from language documentation presents different sssgth linguistic
and non-linguistic, than extensively-adjudicated datenfvell-studied lan-
guages. The challenges include (a) dealing with simpleabidying, format-
ting problems, (b) working with a level of analysis (IGT) tha undeniably
important in linguistics but is rarely considered by congtignal linguists
(however, see Xia and Lewis (2007, 2008), Lewis and Xia (20G&d (c)
working with constantly changing hypotheses about how fr@griately an-
alyze alanguage. Furthermore, though we describe docatieamnas consist-
ing of several distinct stages, in reality different stagkthe process overlap.
This is especially true of the analysis process, which isatt & discovery
process in which morphological analysis/segmentatiorrpimeme labeling,
and even transcription and translation each inform therothe
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Additionally, language documentation provides the oppaty to work
with a wider range of languages, including many that are ltygioally dif-
ferent from the languages of the most widely-used corpocaimputational
linguistics. A computational model based on a handful oditedd, dominant,
or often-recycled languages does not stand up to scrutimeldss a model
that has been tested on a broad selection of the world’s &ayesfrom diverse
language groups. This setting also offers the chance todegputational ap-
proaches like active learning in a live annotation contethweal human
annotators, rather thgrost hown existing data sets, as it is typically done.

We report three main findings. First, basic computationidikdike script-
ing and data management can be very effective in improviegahality
and consistency of data annotated in language documeanfatajects, as
well as increasing the data’s suitability for reuse, bothhioynans and by
machines. Second, both fully-automatic morphologicalnssgtation and
partially-automatic morpheme glossing show some prontissgeeding up
IGT production, if handled carefully. And third, to be effee, any com-
putational support for language documentation must tat@ account the
complex interactions between human annotators and autdraaglysis.

2 Data standardization and representation

We consider computational support for two tasks in cred®ig morpheme
segmentation and gloss labeling. To provide a realistigdage documen-
tation scenario, we work with a collection of existing tekism the Mayan
language Uspanteko as the reference corpus for our expggme

The original Uspanteko data contains a number of incomsifgs and in-
complete annotatiorslt is presented in a loose space-delimited format. To
enable reliable extraction of morpheme segmentation avgtgk for measur-
ing the performance of our models, it was necessary to clpasuah anno-
tation gaps and errors. The cleaned-up corpus also is mitadksufor reuse
by linguists and other interested parties, particularbsthlacking language-
specific knowledge and/or linguistic training. The secotad)s of preparing
the corpus was to convert the annotation to IGT-XML (Palnmer Erk, 2007),
an extensible XML format for IGT that facilitates creatioftools for work-
ing with the data and helps ensure its longevity for future. d$he resulting
cleaned and converted corpus may support future work onukgetechnolo-
gies for Uspanteko.

Here, we discuss high-level considerations for digitatespntations for
language documentation, our choices and procedures fdathgoreparation
step, division of the resulting materials for experimeiom@tand the hybrid

LIn our experience, many corpora produced by language dawatin projects contain sim-
ilar inconsistencies and annotation gaps.
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glosses we use in the semi-automated annotation expesrent

2.1 Digital data management for language documentation

One important aim of language documentation is to recordoaeserve lan-
guage data in ways that will be accessible and useful tordiftausers (for ex-
ample, native speakers, community language teachersguidits of various
stripes) both now and in the future. Bird and Simons (2003niextensive
discussion of requirements for achieving interoperabdind portability in

language documentation. Different documentation effordy require differ-
ent types of annotation, and documentation projects ctiyrase a number
of different (often incompatible) tools and formats for raging their efforts.
In other words, there is no single standard approach to tleerdentation
workflow.

To better understand data management needs and curretitgsac lan-
guage documentation, we conducted an informal survey glilgis in the
University of Texas Linguistics Department who were wotkion docu-
mentation projects. The main finding of our small survey & tpproaches
vary widely. One was at the early stage of eliciting indiatllexical items.
Two of five projects maintained transcription and tranelatiiers, but no
morpheme-level glossing. Two more had digitized texts viulhIGT: tran-
scription, translation, and morpheme glossing. There Wgswide variation
in software used for transcription and/or glossing. Twojgets used Shoe-
box/Toolbox, two used ELAN (one of those in conjunction with Microsoft
Excel) and the fifth used a combination of Microsoft Word andtidsoft
Access.

Although methods, technologies, and formats vary widegneacross this
small sample, linguistic analysis and IGT production farxgaage documen-
tation involve a common set of tasks to accomplish and probl® resolve.
The following is a list of underlying components required fext glossing
and interlinearizatioRi:

1. Development of an orthography for the language and a dabefs to
be used for glossing.

2This section focuses on attainirigternal consistency for a dataset. We do not here ad-
dress achievingxternally-orientecdconsistency through use of annotation or other standasds, a
it is outside the scope of this work. Development and use offi stiandards is a complex issue
with an extensive literature. See, among others, Bird antb8$ (2003), Farrar and Langen-
doen (2003), Barwick and Thieberger (2006), Farrar and £€2007), and the outcomes and
proceedings of the EMELD project and associated workshbps [f: \\enel d. or g). An-
other excellent collection of relevant resources and licds be found on the Cyberling wiki
(htt p: el anguage. net/ cyber! i ng09).

Shttp://ww. si | . org/ conputi ng/ shoebox

4htt p: // ww. | at - mpi . eu/ t ool s/ el an

5We make no claim that this is a comprehensive, fully repriesies list.
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2. Linguistic analysis, including segmentation of wordnf@r, obtaining
stem translations, and determining the contributions ofst@m mor-
phemes to meaning.

3. Labeling stems and morphemes with glosses or partsexetp

4. lterative revision of the linguistic analysis, makingappriate changes
to orthography, label set, segmentation, and gloss labels.

5. Checking consistency of labelings and analysis.

6. General digital management of data at various stageshatation.

We focus our efforts on items 2, 3, and 4. We assume previotsaje
ment of an orthography, basic understanding of the landsiagerphology,
and a set of pre-defined gloss labels, as dictated by the daation project.
Even more than most standard annotation in computatiorglistics, anno-
tation in language documentation is itself a process ofisky. The pipeline
model used in much of natural language processing is in@piate here, pre-
senting another significant challenge to the use of comipat@tsupport.

2.2 OKMA Uspanteko corpus

In order to evaluate fully or partially automated analysigsting annotations
are needed for comparison to the predictions of the autahstetem. Our
reference corpus is a set of texts (Kaan Pixabaj et al., 206 the Mayan
language Uspanteko. Uspanteko is a member of the K'ichegidbr of the
Mayan language family and is spoken by approximately 132fplee pri-
marily in the Quiché Department in west-central Guater(Riehards, 2003).
The texts were collected, transcribed, translated, andtated as part of an
OKMA Mayan language documentation profeand are currently accessible
via the Archive of Indigenous Languages of Latin Americal(idd). ’

The portion of the Uspanteko corpus we use contains 67 tdattisrarious
degrees of annotation. All 67 texts have been transcrilmabral translated
but not glossed, and 32 of the texts have full transcriptitragslations, mor-
phological segmentation, and glossfhghe transcribed and translated texts
are like the Uspanteko sample shown below (text 068, cla288<87):

(1) a. Uspantekayon liin yolow rk'il kita’ tinch’ab’ex Iaj inyol;j iin, si
no ke laj yolj jgaaj tinch’ab’ej i non ge li xk'am rib’ chuwe,am
ge li lajori non li iin yolow rK’ilaq.

b. SpanishSolo ad yo aprend conél. No le hab& en mi idioma.
Sino que en el idioma su page habb. Y $lo ad me fui acos-

6htt p: // www. okma. or g

"http://ww. ai | | a. ut exas. org

8See Table 2 for additional details. The set of texts avalablAILLA varies somewhat from
the set we used.
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tumbrando. 8lo ad ahora yo platico con ellos.

c. English:And so | learned with him. | did not speak to him in my
language [K’ichee’]. But his father spoke to him in HIS larmge
[Uspanteko]. That's how | got used to it, and so now | speak wit
them.

The glossed texts available to us are of four different gerffave are oral
histories, usually having to do with the history of the \giéaand the com-
munity, and another five are personal experience textsidesgevents from
the lives of individual people in the community. One text iaipe, another
is an advice text describing better ways for the communityrtiect the en-
vironment, and the remaining twenty texts are stories, grilgnfolk stories
and children’s stories. This is a small dataset by curremdsrds in compu-
tational linguistics, but it is rather large for a documeiata project.

2.3 Interlinear Glossed Text

Interlinear glossed text is a flexible and efficient way ofgar@ing multiple
levels of linguistic analysis and can take many differemtrfe (Bow et al.,
2003). IGT in a readily-accessible format is an importasoregce that can be
used to examine hypotheses on novel data (e.g. Xia and L204g,, 2008,
Lewis and Xia, 2008). Furthermore, it can be used by edusatml language
activists to create curriculum material for language etlanand promote the
survival of the language (Stiles, 1997, Malone, 2003, Beeseal., 2009).

We focus here on a traditional four-line IGT format, with ashdd@ional
project-defined fifth tier. The XT line shows the original text. The next
two lines—MoRPH and G.oss—present a morphological segmentation of
the text and morpheme-by-morpheme glosses, respectivietygloss line
typically includes both labels for grammatical morpheneg.(PL or COM)
and translations of stems (elwablar “to speak, to speak to” ddioma“lan-
guage”). The fourth line (RANS) is usually a translation of the original text.
The following is an example from Uspanteko:

(2) Text: Kita' tinch ab' ej laj inyolj iin
(3) MorpPH kita' t-in-ch abe-j laj in-yolj iin

GLoss NEG INC-E1S-hablar-SCPREPE1S-idiomayo
POS: PART TAM-PERS-VT-SUFPREPPERS-S PRON

TRANS: ‘No le hablo en miidioma.
(‘I don’t speak to him in my language.)

9KEY: El1S=singular first person ergative, INC=incompletiBART=particle, PREP=preposition,
PRON=pronoun, = NEG=negation, S=sustantivo  (noun), S@gcay suffix, SUF=suffix,
TAM=tense/aspect/mood, VT=transitive verb
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In addition to the four lines described above, OKMA uses a fiftr (POS),
described as the word-class line. This line is a mix of traddl POS tags,
positional labels (e.g. suffix, prefix), and broader lingjuisategories like
TAMfor tense-aspect-mood.

The Leipzig Glossing Rulé8 are a recent movement toward a standard-
ized system for IGT. The Leipzig Rules are proposed not asea fixandard
but rather as a set of conventions which, for the most partplsi reflect
and codify what is already common practice in the lingussiommunity. It
should be noted that the Rules reflect common practice iptbsentation
of IGT. For machine-readability, we need a fix&ducturedrepresentation of
the data presented by IGT.

2.4 IGT-XML

For the purposes of electronic archiving and presentadind,in order to be
amenable to computational analysis and support, it is sacggo have a
machine-readable version of the corpus used by the docati@nproject.
This involves a number of choices about formats and staiwion. This
section describes the IGT-XML format that we use.

The OKMA annotations were created using Shoebox/Toolbavidaly-
used tool for lexicon management and IGT creation, pagitylin language
documentation contexts. The custom, pre-XML whitespadienited format
generated by Toolbox is perhaps the most widespread foondidital rep-
resentation of IGT, but the format makes normalization astructured rep-
resentation particularly challenging. In addition, in Toax the glossaries,
grammatical markers and segmentations are defined at tivédinal project
level, and there is a learning curve of varying acclivity &r incoming lin-
guist when learning how these are defined. The same probléimproject
definitions arise when using other software such as Mictd&safel or Word.

Since hardware changes over time, and most pieces of sefavat op-
erating systems rely on specific hardware to run, it is ctdoi@hoose, for
long-term storage of data, a format that does not dependeoanvthilability of
a single piece of software. In the ideal case, one would ¢haatata format
that is human-readable as well as machine-readable, tdesfudilire users to
understand and access the data format even when all sottvednereviously
read the data has become obsolete.

For the experiments in semi-automatic and automatic aisatiigt we
were planning to do, one central requirement of the reptaten format
wasflexibility, in particular the ability to add or exchange layers of aanot
tion in a modular fashion. The format should be flexible as tocl layers
of annotation are present, and in which order they are adtlstould also

1Ont t p: / / www. eva. npg. de/ | i ngua/ r esour ces/ gl ossi ng-rul es. php
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<phr ases>
<phrase ph_id="T1_P1">
<pl ai nt ext >xel ch i +</ pl ai nt ext >
<word text="xelch" wd_id="T1_P1_WL"/>
<word text="li" wd_id="T1_P1_wWe"/>
</ phrase>
</ phrases>
<nor phenes>
<phrase phrase_ref="T1_P1">
<mor ph nmorph_i d="T1_P1_W_M" text="x-"/>
<nor ph norph_id="T1_P1_W_M" text="el"/>
<nor ph norph_id="T1_P1_W_M" text="-ch"/>
<nor ph norph_id="T1_P1_W_M" text="1i"/>
</ phrase
</ mor phemes>

Figure 1: Partial IGT-XML representation for two Uspantekords. (trans-
lations:salio entonceghen he lef)

allow us to store, side by side, gold labels created by a huanantator and
machine-created labels for the same layer of annotation.

XML formats fulfill all these requirements: They are humaadable as
well as machine-readable, and they are independent of atigyar soft-
ware. We use the IGT-XML format (Palmer and Erk, 2007pi&ly standoff
format. It uses globally unique IDs rather than XML embeddior linking
annotation layers. In particulag;nor ph> and <wor d> annotations are
kept separate. In this format, annotation layers can bedafliebdbly without
any change to existing layers. Figure 1 shows an exafple.

In its minimal form, IGT-XML has three blocks, for phrasespmphemes,
and glosses, but it is extensible by further blocks, e.gPf@S-tags. Itis also
possible to have different types of annotation at the sanggiistic level, for
example manually created as well as automatically assigesitags.

The flexibility afforded by IGT-XML is useful not only for maging au-
tomatic and semi-automatic analyses, but also for storiagual annotation.
The structure of languages targeted in language docunengatojects is
usually not as well-studied as the structure of more intgnseidied lan-
guages like English. Consequently, linguistic analysishef language data
is often tentative and subject to change. For this reasanatlvantageous
to have different layers of annotation that are not coupigltly, such that

L1Earlier XML formats proposed for IGT (e.g. Hughes et al. @)®ughes et al. (2003), Bow
et al. (2003)) use representations which nest tiers of atinatone within the other. Strictly hier-
archical formats such as the one introduced by Hughes &0f13] limit flexibility of annotation
layers and are thus inconvenient for our purposes. In thatemehe morphological analysis
of a word is stored within the representation for that worg;hsthat the addition of another,
machine-generated morphological analysis would requisnging the representation of each
word. A somewhat more flexible format is introduced in Scteoand Thieberger (2006), but
that format too is largely tailored to flexibility in presatibn rather than analysis.
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individual layers can be exchanged without affecting ather

2.5 Normalization of OKMA annotations

The examples of Uspanteko shown so far have been perfegtlyesged, per-
fectly labeled, and perfectly aligned. Each morpheme ifggass precisely
one label; stem and affix status is consistently indicatetyphenation (af-
fixes take hyphens, stems do not); and the cruciaR®H and Q.osstiers
each contain the same number of elements. Consistencyalirigland align-
ment is essential for IGT data to be smoothly handled in opedrents. The
original annotations are often messier than this. In thitiee, we discuss the
data clean-up work that was undertaken by Palmer (a conipuightinguist)
and Kaan (an Uspanteko language expert), working sidees-Ehis proved
to be a very effective combination of skills for a rapid andy&ted effort to
improve the machine-readability and consistency of theesr

Textual data from endangered languages, many of which hewer been
written down before, tend to require more preprocessing teat that was
written down to start with, even if that text is itself in ander-resourced
language. The orthography and the grammatical analyse$ottma the ba-
sis of the associated writing system are often in a state afdluing the
documentation process. In addition, the vast majority afuthentary data
are from transcribed spoken texts, often spontaneousispeetory-telling,
with the usual dysfluencies, false starts, repetitionsjacwmplete sentences.
The annotations of the transcriptions inherit this messnEinally, IGT ver-
sions of the texts are sometimes produced by annotatorsariyng levels of
knowledge and/or expertise, both language-specific artdiparg to linguis-
tic analysis. In our case, all of these factors togetherltesin IGT which
needed a lot of clean-up.

For this task, we applied standard scripting, concordan@nd search-
and-replace techniques, including heavy use of regulaesspns. We aimed
for the simplest script or code possible to zoom in on po&éetirors without
having to hunt through the entire corpus to find them.

Grouping of annotation tiers. For each clause of labeled text, there should
be a text tier, a morpheme tier, a gloss tier, a word-clagstingl a translation
tier. In a whitespace-delimited format, grouping of antiotatiers is often
indicated by inserting a blank line between each clausetignouping, and
errors in this grouping (e.g. extra blank linestweenelated annotation tiers,
or absence of a blank line between tiers for two differentists) are easy
for a human to diagnose but tedious to correct. At the same gj@itting this
basic grouping right is essential for any subsequent authaocessing. We
used a simple script to produce a list of suspect clause$iegattention to
better target our manual review.
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CORRECT X- el -ch
TOOMUCH x- -el- -ch
TOO LITTLE X el ch
MIXED X- - el -ch

Table 1: Some hyphenation possibilities for a three morpherd form.

Label consistency. Inconsistent labels occur reasonably frequently in lan-
guage documentation annotation. Some errors are typogedgakatypos
e.g. labeling a future-tense morpheme wiAthT instead oFUT). Others stem
from a lack of agreement on conventions for capitalizatioth gunctuation of
labels; in our case the label for third-person singular&rganarking showed
up in all the following permutation€3S, E3s, e3s, E3S. , E3s. , e3s. .
Straightforward UNIX command line utilities allowed us taickly build a
list of all tags in the corpus, which at its largest contailogdr 200 differ-
enttags. The list was adjudicated by Palmer with assistanseveral points
from Kaan, and a final list of 69 possible labels was agreedufample
search-and-replace functions took care of correctingetieesors. Note that
this use of search-and-replace, together with concordgnciuld also be
very useful to help the linguist back-propagate changesatyais, orthogra-
phy, or labeling conventions that ocaluring annotation.

Consistency of hyphenation. A challenge for representing IGT in a machine-
readable format, especially starting from a minimallysstured representa-
tion, is to treat each morpheme as an individual token whiésgrving the
links between words on one line and morphemes on the next. 3&chy
phenation conventions to indicate groups of morphemescidsed with a
common word: prefixes get a right-side hyphen, suffixes geftaside hy-
phen, and stems remain bare. Hyphenation patterns in thmalrtexts var-
ied a great deal. For example, the word faxel - ch (COMvtsal i r-DI R)
could appear with many different hyphenations, some of tvhaie shown in
Table 1. These are natural considerations for computdtigoek, but they
may be utterly unimportant to the individual annotator @& ttocumentation
project. We used a combination of automatic morpheme typstification
and targeted manual correction to address hyphenatiorserro

Alignment of annotation tiers. It is also crucial to properly maintain links
between source text morphemes and the gloss labels assigheth. Specif-
ically, we need to ensure that thed#pH, GLOSS, and POS lines all have the
same number of items. We again used scripting procedurettdify such
errors, but resolving them required manual review. Somaligisments come
from bad segmentation, as in (4) and (5). Here the numbeedi@hts in the
MoRPHIline does not match the number of elements in th@&sline. The
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problem in this case is a misanalysisyafl ow: it should be broken into two
morphemesy(ol - ow) and glossegl at i car - AP.12

(4) TexT:Non |i in yolow rk’il
(5) MorPHNon li in yolowr-k'il
GLoss DEM DEM yo platicar AP E3s.-SR
POS: DEM DEM PRONVI SUF PERS SREL

TRANS: ‘Solo asi yo aprendi con €&l

Other alignment errors come from gaps in annotation. Eveongnthe 32
glossed texts, not all are fully annotated. Most includeas@mnal instances
of partial annotation at the clause, word, or morpheme lél@Imaintain
tier-to-tier alignment, each morpheme needmelabel on each tier, even if
only to indicate that the label is unknown. Some missingl&bere filled in
by Kaan. Others were filled with a placeholder labe???’ ). The version
of the corpus used in the experiments described below irsld&8 known
morphemes labeled with???’ .13

Conversionto IGT-XML. Finally, once word-to-morpheme and morpheme-
to-gloss alignment problems had been resolved, we com/éntecleaned an-
notations into IGT-XML (Palmer and Erk, 2007) using the ShmdToolbox
interfaces provided in the Natural Language Toolkit (Rgbmet al., 2007).
The conversion process is straightforward, but the manprpoessing steps
described here are crucial for making it so.

It is worth noting that documentary linguistics projects ¢enefit greatly
from performing a semi-automated clean-up process andecting formats
in this manner. The resulting corpus is much more useful dturE corpus
and computational studies. In addition, the automatechelgaprocess can
be fruitful for linguistic analysis. On some occasions, eeipts uncovered
discrepancies in analysis or interesting error patterasléu to deeper anal-
ysis and new insights into some aspect of the language.

2.6 Organization of corpus and labels for experiments

The Uspanteko corpus was split into training, developreerd,held-out test
sets as detailed in Table 2. Texts were chosen for eachgoliithin balance
with respect to genre and average clause length. These alledsitasets, but
the size is realistic for computational work on endangeaegliages.

The two tasks we focus on for producing IGT are word segmiemtédle-
termination of stems and affixes) and glossing each segi8&arhs and af-

L2kEy: AP=antipassive, DEM=demonstrative, E3S=singul&vdtperson ergative, PERS=person marking,
SR/SREL=relational noun, VI=intransitive verb

13There are 734 cases of th@??’ label which appear in cases of unrecoverable morphemes.
These are cases where the segmentation in the originalorgicates the existence of a mor-
pheme without indicating its identity. Such morphemes apps’ ??’ in the original corpus.
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Section Words Clauses W/C| Texts
TRAIN 38802 8099 4.79| 030,035,036,037,049,050,052,053,054,055
056,057,059,063,066,067,068,071,072,076,077

DEev 16792 3847  4.36| 020,022,023,025,029

TEST 18704 3785  4.94| 001,002,004,008a,014,016

TRANSL 7361 005,033

RAw 210157 003,006,007,009,010,011,012,013,017,018

019,021,024,026,027,031,032,034,041,047
048,060,061,062,064,069,070,073,074,075
080,081,110

Table 2: Detailed break-down of divisions in the corpus.

fixes each get a different type of gloss: the gloss of a stempigdlly its
translation whereas the gloss of an affix is a label indigatin grammatical
role. The additional word-class line provides part-ofesgeinformation for
the stems, such a4 for platicar.

The target representation for the semi-automated anootsiidies in sec-
tion 4 is an additional tier which combines part-of-speedttels for stems
with gloss labels for affixes and stand-alone morphemes.ri&i@ reason
for choosing this representation was to separate the stamslation task
(e.g.hablar for cha’ be) from the glossing task. In an actual documenta-
tion project,boththe stem translation and the part-of-speech label would be
provided as part of the glossing process. However, stersla@on is a much
more indeterminate task, so we focus on predicting a refiaeofgloss/POS
labels. Example (6) repeats the clause in (4), adding thisawenbined tier.
Stem labels are given in bold text, and affix labels in plaid.te

(6) TeExXT:Non |i in yolow rk’il

(7) MorpPH Non i in yol -owr -k’ il
ComBo: DEM DEM PRONVI-AP  E3S-SR

TRANS: ‘Solo asi yo aprendi con él.

A simple procedure was used to create the new tier. For eachhame, if

a gloss label (such &3EMor E3S) appears on the gloss line (second line of
(3)), we select that label. If what appears is a stem traoslatve instead
select the part-of-speech label from the next tier downdttme of (3)).

In the entire corpus, sixty-nine different labels appeathis combined
tier. Table 3 shows the five most common part-of-speechdaliedt) and the
five most common gloss labels (right). The most common lehedccounts
for 11.3% of the tokens in the corpus.

We are currently working on making our cleaned up versiotefdorpus
available. Details will be posted to the EARL project webtt

http://conp. ling. utexas. edu/ earl
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S noun 7167 | E3S sg.3p. ergative| 3433
ADV  adverb 6646 | INC incompletive | 2835
VT trans.verb | 5122 | COM completive 2586
VI intrans. verb| 3638 | PL plural 1905
PART particle 3443 | SREL relational noun| 1881

Table 3: Most common labels and their frequencies: POS datrethe left,
gloss labels on the right

3 Unsupervised preprocessing of morphology

In unsupervised learning, the machine learns from raw,baial text, such
as transcribed speech from a language documentation prédjbade the pre-
vious section considered computational support that resho learning or
prediction by the machine, this section discusses unsigeehtearning of
morphology. This work directly targets the IGT-creatiob&sk of segment-
ing word forms into their component stems and affixes.

In this section, we present unsupervised approaches thaterae as a
preprocessing step to manual analysis. They focus on inddlee stems and
affixes and producing (possibly noisy) segmentations diedisegmentation
candidates. We assume that the morphological pattern datigriage itself
— i.e. whether it is suffixal, prefixal, both, concatenatit@mplatic, etc. —
has already been determined. We consider it a reasonahimpssn that
the linguist doing the analysis will have a good hypothesisdanguage’s
morphological pattern at this level. Here, we deal only Withguages that
are suffixal, prefixal, or both.

We frame our morphology induction problem as a dual probléfa)clus-
tering of morphologically related word forms, and (b) segtaéion of stems
and affixes. These are closely related tasks where knowtsdge may ben-
efit the other. Below, we outline two approaches that we haaenéed for
unsupervised morpheme clustering and segmentation.

3.1 Cross-lingual projection

The first method that we present is that of Moon and Erk (20@8)ses bi-
texts (parallel texts) where linguistic resources arelalte for one of the
languages, and corresponding words in the two textalageed Word align-
ment in a parallel corpus is a mapping from each word to oneaeroorre-
sponding words in the corresponding sentence in the othgukge (Brown
etal., 1990). Developed in the context of machine trarmhativord alignment
has also been used poojectlinguistic information from a source language,
for which manual or automatic linguistic analyses are almd (e.g. Spanish),
to a target language, for which they are not (e.g. Uspant&es Yarowsky
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et al. (2001), Yarowsky and Ngai (2001), Snyder and BarA9p8) for ap-
proaches that specifically deal with morphology induction.

Following the lead of Yarowsky et al. (2001) and Yarowsky awglai
(2001), we use word alignments to project lemmatizatioarimiation across
languages. The source language part of the parallel textdsreatically an-
alyzed with part-of-speech and lemma information. All &tignguage word
forms that have nonzero probability of occurring with a gigeurce language
lemma/POS tag pair can potentially be word forms of a comreomta. Of
course, we need to filter out words that are synonyms but dactatlly de-
rive from the same lemma. So we designate as the target “pdeotna” the
target language word form with the highest probability ofazurring with
the source language lemma, and we remove from the set ofdztrdivord
forms all words that do not share a common prefix of length characters
with the target pseudo-lemma (this holds for suffixal largesa for prefixal
languages, common suffixes are checked).

We applied this approach of learning lemmatization thropigijection to
English as source language and German as target languagsedithe Ger-
man and English sections of the Europarl corpus (Koehn, @0l evalu-
ated against the German TIGER corpus (Brants et al., 20023hvhas man-
ual lemma annotation. Evaluatby type the approach achieved 77.2% preci-
sion, 87.4% recall, and an F-score of 79.1%. Evaludiiptokeryields 83.6%
precision, 26.7% recall, and an F-score of 40.5%. This mté& that some
high-frequency items are missed, which is to be expectekdighsfrequency
target items are most likely to be aligned with many différeords in the
source language.

3.2 Unsupervised induction of morphological clusters usig document
boundaries

One problem of the approach of Moon and Erk (2008)—as well asym
other methods for unsupervised morphological analysisr{§]al 955, Hafer
and Weiss, 1974, Jacquemin, 1997, Gaussier, 1999, Golds20id1, Schone
and Jurafsky, 2001, Freitag, 2005, Demberg, 2007)—is itarmee on mul-

tiple parameters, such as the requirement of a prefix overitipthe target

pseudo-lemma of at least 4 characters. This is problenmatic documen-
tary setting: Parameters that need manual tuning are edlydiad since they
place an additional workload on the documentary linguistt 8/en param-
eters that are automatically calibrated on data are pradtiersince usually
the amounts of data available in a documentary setting &tvedy small.

So the second approach that we present is that of Moon e089f2which
attempts to eliminate parameters as much as possible. Alkayis to exploit
a feature of documentary data (as well as most corpora)dinair universal—
that document boundaries are naturally preserved in thetssets. The sim-
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ple intuition is that if orthographically similar words agcwithin the same
document, there is a good chance that they are morphologietdted.

The approach proceeds in four stages, again addressingahkems of
clustering and segmentation discussed above. (1) The tizstisa segmen-
tation step, generating suffix candidates whenever a constenm candidate
is found to occur with multiple different endings (and arggasly for pre-
fixes). The criterion for identifying stem candidates isdzhsen the intuition
that stems are longer than affix€sThis step overgenerates, so we (2) filter
candidate affixes, retaining only those that show stagifyicsignificant co-
occurrence with shared stems. To test significance, we useigay? tests.
The remaining steps are clustering steps: After (3) clugdeaffixes, we (4)
cluster stems based on affix clusters.

Documentboundaries are utilized in stages (1) and (4)elm(dt) we count
stem co-occurrence either by document or globally. In stgpme cluster
stems that occur, either in the same document or globalti, affixes in the
same cluster.

The model was applied to two data sets from English and to gpab-
teko data set discussed in section Zadsufi While English is not cur-
rently endangered and seems an inadequate subject forraxgplthe fea-
sibility of this model, English is thde factolanguage in unsupervised ap-
proaches to morphology (Schone and Jurafsky, 2000, Fre28@5, Poon
et al., 2009) and merits inclusion by strength of convengtame. It is also
easy to evaluate models on, due to CELEX (Baayen et al., 1&88)he
easy availability of off-the-shelf lemmatizers and stemsm@n its own, En-
glish presents interesting challanges in terms of morpgickl analysis due
to its tendency to carry orthographical baggage from ceietsirpast and
from a grab-bag of foreign languages, baggage that does xigt ér lan-
guages that only recently acquired a writing system. We wasble to in-
clude other truly endangered languages due to the diffi@ilobtaining gold
evaluation standards and the lack of access to native speaiesuch lan-
guages who could have manually evaluated our model oulautEnglish,
we used a larger and a smaller dataset, of 9M and 187K wordh$pke-
spectively, to test the effect of dataset size on the moddboth cases, the
data came from thlew York Timesegment of the Gigaword CorptsThe
best performing model on both English datasets, large atmdl,aimsed global
search for segmentation (step 1) and document-aware iGhgstestep 4).
Precision/recall/F-score for the larger and smaller daee®7.7,/70.2/73.8
and88.3/78.0/82.8 respectively. Awareness of document boundaries seems

15In the case of English, there are exceptions suchedise-ing, do/do-ingbut they are not
prevalent asypes
16LDC catalog no.: LDC2003T05
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particularly helpful with smaller corpora: On the small pos, the completely
document-aware approach (applied in steps 1+4) outpeeidacompletely
global approach, with the opposite results on the largeuomll versions of
our model achieved higher F-scores than two benchmarkmsgstanguistica
(Goldsmith, 2001) Taesuh —which achieved 76.2 on the smaller and 61.8
on the larger—and Morfessor (Creutz and Lagus, 200Taésuf —which
achieved 59.7 on the smaller and 66.3 on the larder

Uspanteko morphology is polysynthetic, with both produeprefixes and
productive suffixes, so we tested three different assumgtiath the model:
that the language is only prefixal, only suffixal, and suffbakfixal with no
concatenative morphology. The best results were achieyedfblly global
model viewing Uspanteko as prefixal, with precisiih0, recall 50.0, and
an F-score 064.8. (Taesui Linguistica and Morfessor achieved F-score of
64.3 and 38.8, respectively.

The effectiveness of global segmentation (step 1) is dubddeuristic
that assumes that stems will be longer than affixes, andlhengppresses
the generation of short stems. Short words account for maiserthrough
spurious affixes, and with the larger, global datasetsetisea greater chance
that a short word will be filtered out because it happens te lsalarge over-
lap with a longer unrelated word. Document based clustasnmarticularly
effective when coupled with global segmentation: It blotkes clustering of
potential morphological variants which have never co-o@mliin a docu-
ment. This boosts precision. We are still examining why oalndata sets,
document based segmentation and clustering show strocgsiprein spite
of the fact that step (1) may generate noisy candidates.

It remains to be seen how useful the output from these mosléts cre-
ating interlinear glossed texts as part of an overall laggudocumentation
process. However, manual evaluation by Kaan of the outpatioiodel is
encouraging. She measured the accuracy of 100 random niogited clus-
ters produced by the model for Uspanteko and found individuaters to be
98.5% accurate on average, with complete accuracy on 7% @%abusters.
(Taesui Linguistica had accuracy of 96.0% and 85.0% full clusteraecy.
Morfessor had 85.3% accuracy and 55.0% full cluster accyr&ee Moon
et al. (2009) for more details on the model and evaluationteMextensive
evaluation needs to consider two factors: (1) the effectubdrmatic prepro-
cessing on annotation speed; and (2) the effect on annotiitsistency and
correctness.

Another possible extension concerns the question of pipeltyle pro-
cessing versus integrated models. In the process of IGTiecneave are cur-

1"Note that both were used with default parameters and thafeglsor was not used for its
intended purpose of pure segmentation.
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rently considering morphological analysis (section 3) pad-of-speech tag-
ging (section 4) completely separately. The two proceskesly inform each

other, but it is open whether the advantages gained by tfosniration could

outweigh the added complexity of an integrated model.

4 Semi-automated annotation

The previous section discussed @amsupervisednodel for preprocessing a
corpus to suggest morphological variants and analysesidséction we dis-
cuss models that receiwipervisioni.e., they learn from previously given
human annotation. The amount of material which gets anedtst often
limited by the money available for annotation. In the lamggia@ocumenta-
tion scenario, there is the additional hard constraintro&étrunning out—for
severely-endangered languages there may be no more thail @arhof one
generation still using the language, and before long thexglme no more liv-
ing knowledge of the language.

This section considers how a machine learning systenirdaract with
an annotator to efficiently improve its accuracy such thaai be used for
reliable labeling of new material. When annotation is dome seek to have
a corpus which is maximally useful for training an accurddssifier that can
label further material reliably. This relies on two aspesftmiachine learning
systems which have little supervised (i.e. human-labeisiing data: (1)
not all examples are equally valuable to machine learnaetg2neven when
a machine learner is unsure on an example, it often assigigé @fobability
to the correct label, compared to probabilities for all othessible labels.

In Palmer et al. (2009) and Baldridge and Palmer (2009), veeriee a
series of annotation experiments designed to test theliyabi exploiting
these two aspects to speed up morpheme gloss labeling. &ticat goal is
to explore best practices for using automated support tiefally-annotated
texts. The aim is to achieve the highest quality possiblaiwiixed resource
limits. Palmer et al. (2009) describes our data preparatahinitial results
for the use of active learning on the task of morpheme glgs&ialdridge and
Palmer (2009) gives a detailed comparison of differentetfias and condi-
tions in terms of their relative effectiveness. Here, wevjte a few details
not covered in those papers and summarize the experimeahtesults.

4.1 Active learning

Active learning has one core driving principle: we should osr human ex-
perts as effectively as possible, so we should avoid askiamtfor labels
for easy examples. Examples which present some noveltykatg to help a
machine learner improve its performance more quickly. lafbactive learn-
ing attempts to maximize the impact of human annotation bgniglentifying

informative examples for the human to annotate. In one comewtive learn-
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ing scenario, a machine-learned model is initially trainady minimal set of
annotated seed data. The learned model is then used to armlgrge set
of previously unseen examples, a set of maximally-infoiveatxamples is
selected from this pool, and the selected set is annotated oyman and
added to the training data. The model is then retrained osdéd set plus the
newly annotated examples, and the cycle repeats. Witheegptne need for
labeled data, active learning is well-suited for the larggudocumentation
context, in which it is common for a project to produce a sraatiount of

IGT-annotated data and a much greater amount of unannatatad

The active learning method we use is uncertainty samplirgdn(Get al.,
1995). Uncertainty sampling identifies examples the mosldéast confi-
dent about. Intuitively, if the model believes all possiblmalyses are more
or less equally likely, it cannot confidently select one labeer the others.
The model’s low confidence level indicates that it has notdvamlgh expe-
rience with that type of data to make an informed decisiohe@iag high-
uncertainty examples for annotation thus is intended toimiae the amount
of new information provided for learning during each cycle.

We comparaincertainty selection against two baseline methagspen-
tial andrandom. For reasons of coherence and the importance of context,
the default annotation procedure in language documentegtigequential se-
lection. So it is important for us to compare our learnerdgdi selection
to business-as-usual, even though random selection deneoaks better.
However, sequential selection is generally sub-optimeattigularly for cor-
pora with contiguous sub-domains (e.g. texts from diffegemre), because it
requires annotation of many similar examples in order ta@ekamples that,
due to their novelty, are likely to help a learned model geliez better. Ran-
dom selection requires no machine learning but typicallykeanuch better
than sequential selection. Random avoids the sub-donmegindly sampling
freely from the entire corpus, and it provides a strong haselgainst which
to compare learner-guided selection, such as uncertantpkng.

4.2 Label suggestions

The idea of using label suggestions is quite straightfotre model ranks
the possible labels which it might assign to a morpheme, hadnhnotator
uses that ranked list rather than the full, uninformatigt &f all possible
labels, to come to a determination more quickly. Ideallg tlyht label is
ranked at the top of the list and is thus the first label prodjadeeaning the
annotator just needs to spot-check the model output.

Our experiments consider two conditions for providing sifisr labels: a
do-suggestds) condition where the labels predicted by the machine learne
are shown to the annotator, antha-suggest(ns) condition where the an-
notator does not see the predictions. Tsecases show the annotator the
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most probable label according to the most-recently-lehmedel, as well as
a ranked list of other highly-likely label$.In the ns cases, the annotator is
shown a list of labels previously seen in the training datate given mor-
pheme; this list is ranked according to frequency of occwee Note that
this is a stronger no-suggest baseline than one which silisgyall labels in
alphabetical order. Providing the list of previously-skels in thenscondi-
tions is intended to mirror an annotator’s interaction v8tioebox/Toolbox,
making for a better comparison. It is also extremely likddgttranking by
frequency helps considerably in determining the corrdutila

4.3 Annotators and (lack of) annotation conventions

The annotations in the experiments were performed by Calirgoie: Kaan.
Both are trained linguists who specialize in language damtation and have
extensive field experience. Both are fluent speakers of Spattie target
translation and glossing language for the OKMA texts.

Kaan has done extensive linguistic and lexicographic worklepanteko.
Her work includes a written grammar of the language (Kaamafax et al.,
2007b) and contributions to the publication of an Uspari8ganish dic-
tionary (Vicente Méndez, 2007). Additionally, Kaan is aina speaker of
K’ichee’, a Mayan language that is closely related to Usplamt

Campbell is a doctoral student in language documentatioosertwork
focuses on indigenous languages of Mesoamerica, paric@aatino and
Zapotec. At the start of the annotation studies, Campbelihweprevious ex-
perience with Uspanteko and only limited prior knowledgéhef structure of
Mayan languages. He had access to the Uspanteko-Spartisindiyg during
annotation, but not to the grammar.

These two annotators were chosen specifically for theiefit levels
of expertise in the language. The time of a linguist with laage-specific
expertise is one of the most valuable resources for produ€iT, and our
experiments touch on the question of how to most efficientlg that re-
source in the annotation process. But documentation geogten also (or
sometimes instead) draw on the time of a lingwighoutprior experience in
the language. We compare the relative effectiveness of imacipport for
these two different types of annotators and find evidendegtkgertise does
influence which selection strategies are most effecfive.

A factor related to expertise is that not all annotators tlostsame. For
example, the most knowledgeable and possibly most effiaiembtator might

1870 appear on this list, a label must be at least half as pretabthe best label.

191t should of course be noted that one annotator per type, dsawein these studies, is too
small a sample to draw generalizable conclusions. Ourteearg suggestive but not conclusive.
At the same time, the two-annotator scenario accuratelgatsfthe resources available to many
documentation projects.
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well be the most costly or have the most limited time (whick He same
effect, for language documentation). This sort of factoulsladeally inform
an active learning process, though we do not address it here.

A similarity of our setup to a typical documentation projecthe absence
of a detailed annotation manual. Annotation in languageudantation is
itself a process of discovery. Analyses change as annotptioceeds, and
annotation conventions necessarily change along with thermn without
strict guidelines, though, annotators need to have sonses#itommon con-
ventions, and in particular our annotators needed to have sense of the
conventions of the original OKMA annotations. To this end; use a new
annotator training process.

Two seed sets of ten clauses each were selected to be usddrtniiman
annotation training and for initial training of the machlearners. In separate
sessions, each annotator was given these morpheme-segiukises to la-
bel, one set of ten at a time. The labels were compared to ii@arOKMA
labels, and results indicating which matched and which didaere shown.
The annotator’s task was to relabel all incorrect labe¢sating the process
until the two sets of labels matched completely. In casegevtiee annotator
made 5—7 consecutive incorrect guesses, the correct lasgbrovided.

4.4 Annotation tool

To evaluate the effectiveness of machine support in théfelt conditions
requires integrating automated analysis into the manuabtation process.

The integration in turn requires careful coordination sEthcomponents: 1)
presenting examples to the annotator and storing the amnta?) train-

ing and evaluating tagging models using data labeled by rinetator, and

3) selecting new examples for annotation. Since no existmgptation tool
directly supports such integration, we developed a new, thel OpenNLP

IGT Editor’®, to manage the three processes. The annotation component of
the tool, and in particular the user interface, is built oa thterlinear Text
Editor (Lowe et al., 20043%

An example of annotating a clause with the IGT editor is giuefkrig-
ure 2. The editor window displays the static tiers of the IGiha@tation for
the clause; these are th&eXT, TRANS, and MoRPH lines. The first two ap-
pear in the upper left window of the editor. The individual nploemes are
presented for labeling in the window below, grouped by waevith a sepa-
rate gloss field for each morpheme.

This particular example shows the state of the editor as aotator la-
bels the first morpheme of a clause in one of dseconditions. The clause
initially displays with the gloss fields populated by the mlileely label for

2nttp://igt.sourceforge. net/
2lhttp://mchel.jacobson.free. fr/ITE i ndexen. ht m
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alnlp: Round 2

sentence[T76_P371]

Taye' ree lamas, lamasw titzib".+
Y se lo das en donde se alivia

~word[3] word[4]

- | ve'\HI o] | I
com om ||| part |
1 voc

INC

other gloss @27 .. DIR) ¥

other gloss (E1.. MED) »

other gloss (MOV ... TOP) ¥
other gloss (TRN ... VOC) »

[tamaas |[ -w
[ apv ||| me |

[ lamaas |

[ | [z
| aov ||

[ e ][ v

{wnln[ﬂ} word[1] an[z]—

e

[r—
ev [2/10( Ne Stop Finalize | [] Flag annotation

Figure 2: The OpenNLP IGT Editor interface.

each morpheme, as determined by the learned classificatolelmin this
case, the annotator has not immediately accepted the neéshétel sug-
gestion and instead seeks to choose a different label. T ¢aoices ap-
pear in a drop down menu for the gloss field. The first three stem the
menu—COM VOC, andl NC—are label suggestions from the machine, ranked
by decreasing likelihood. The rest of the label set is adolesthrough the
alphabetically-organized menus appearing below the Isibgyestions. Ev-
ery label in the pre-determined label set is available fergwmorpheme, but
a few have been highlighted by the machine as more likelyogfsoiOne ad-
vantage of using a fixed label set presented in drop down misntht it
prevents label inconsistencies by not allowing free input.

The annotation tool also measures and logs the time takemti@e each
individual clause, and the menu bar at the bottom of the edibodow both
tracks progress through the batch of clauses (shown b3/fléeounter) and
gives the annotator the ability to stop timing in order toetdkeaks. When
the annotator hits th&top button, though, the screen greys out and the clause
is no longer visible. The editor also allows free movemertiveen clauses
in the batch, but no revision is possible once the annotationthe batch
have been finalized. The final point to note is Flag annotation checkbox
at the bottom center of the window. In an ideal tool, the aatwtwould be
able to change segmentations as well as making gloss labiliates, but
the OpenNLP IGT Editor does not offer that flexibility. As axgpromise, the
checkbox allows the annotator to flag clauses with problersagmentations
and/or analyses for later inspection. The editor procd§s&s<ML, and the
set of flagged clauses is easily retrievable from the XML files

An additional requirement was that the editor interface twmbdle intu-
itive and easy-to-use. Anticipating and handling the usezsds, particularly
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Figure 3. Accuracy on previously-unseen morphemes for bottotators,
seq vs.unc.

those of the non-computationally-savvy user, added sianifly to the devel-
opment time. Yet still some human-computer interactionésgurned out to
hurt performance (in terms of accuracy per the amount of §ipgat) for both
the learned models and the human annotators. This is detusgreater de-
tail in section 5.

The OpenNLP IGT Editor is available under the open sourcséreGen-
eral Public Licensé? We hope that it will enable the language documentation
community to take advantage of our tools and techniques.

4.5 Findings

One of the biggest findings—one which we fully expected—at this im-

perative to measure cost in terms of time rather than usingjtacast. This
is crucial since unit cost is the standard practice in ad@agning studies
(which are almost entirely simulation studies). Measuriogt in terms of
morphemes indicated that Campbell (the annotator withaygadteko lan-
guage expertise) was the most effective annotator, butrdsislt reversed

22http:// ww. gnu. org/ | i censes/ | gpl . htm
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when the time used to annotate was taken into account: wiih ¢iost, Kaan
produced datasets that trained more accurate classifiers more quickly.

The second, more surprising, finding is that uncertaintgcgin worked
well with Kaan, but it performed worse than random seleciwith Campbell.
This indicates that language (or domain) expertise maiterssing active
learning. In particular, it indicates that we must develogtimods that model
not only how useful any given example is likely to be (e.gingsincertainty),
but also how well and how quickly a given annotator is likelyannotate it.
There has been very little work on annotator-aware seledtoategies in
active learning research so far (although see (Donmez artub@ell, 2008)
and (Arora et al., 2009)), yet it is clearly essential if @etiearning is to be
an effective technique in real-life annotation projects.

This discussion of selection strategy effectiveness perta the accuracy
of the learned model in labeling all words in the corpus, bid is just one
way to measure the adequacy of the models and of the entkethbet. For
example, improved performance on uncommon constructiogstrbe more
important than overall high accuracy on the common casegsir&i3 shows
that prediction of labels for unseen morphemes gets a péaatlg large boost
from active learning. This is highly relevant for languagedmentation: a
major goal is to analyze the long tail of words/construdionthe language
that may not be common but are linguistically interestingréduncertainty
selection shines in our experiments for both annotator$ coaditions.

The third major finding is that label suggestions providedh®machine
were useful for Campbell but not for Kaan. Campbell foundghggestions
useful for limiting the likely analyses for a given morphemdereas Kaan
initially found them to be a distraction and only paid attentto them later
on in the annotation when the machine’s predictions hadrbeanore accu-
rate. However, these results were somewhat confoundedvaehat label
suggestion was implemented unexpectedly made it hardiened for the an-
notators to locate the label they wanted to select. The pyirabservation
on label suggestions, then, is that it is probably most ingrdrto consider
the interface design when hoping to allow machine suggestio speed up
annotation. The other, unsurprising, observation is treathine label sugges-
tions should only be provided after the machine is suffityesmtcurate. This
suggests that there should be studies on measuring whentenmatassifier
is sufficiently accurate to begin suggesting labels (thimisa trivial thing to
do, since there is no evaluation set available).

In summary, the standard strategy of sequential annotatithnno input
from a machine learner is outperformed by some configuratidriearner-
guided example selection and machine label suggestionsetts, annota-
tors with different levels of expertise may find differemegégies to be more
or less effective when it comes to quickly and efficientlygwoing a fully-
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labeled corpus of a given accuracy. The impact of differermtween an-
notators indicates that in order to reliably obtain cosudidns with active
learning techniques, annotators’ fallibility, relialbfli and sensitivity to cost
must be modeled (Donmez and Carbonell, 2008). The resslisbaing into

focus the uncertainty regarding how well active learningksan practical

applications. This is particularly important in the langeadocumentation
context, where software support for documenting languhgego be robust,
flexible, easy to learn, and straightforward to use.

5 Interaction of annotators with machine decisions

A key part of our approach to reducing annotation cost is tegrate ma-
chine support and manual annotation. In this case, the atioi$ provided
are labels for morphemes in IGT, and the annotators are twardentary
linguists with extensive field experience. The annotatarsked in a number
of different experimental settings with different levelsmachine support,
which comes in the forms of both active learning and machaibell sug-
gestion. The annotators found both advantages and distd)esto working
with machine assistance. Also the two annotators diffeatlyevith respect
to their previous experience with Uspanteko, and the diffetevels of ex-
pertise had a strong effect on which levels and types of mactupport were
most helpful® These attributes also changed as annotation progressed and
the annotators progressed along their own learning curve.

5.1 Learning curve

In any annotation project, annotators go through an imtise during which
they become familiar with the data, the annotation guidsliand the an-
notation interface. During this phase, per-label annotatime is generally
higher than it is later in the process, and mistakes and sistancies are
more likely to occur. While Kaan’s annotation times line uphathis typical
case, Campbell’s learning curve is much steeper; in additcfamiliariza-
tion with guidelines and interface, Campbell is in fact digering the nature
of the language as he goes.

As expected, Kaan’s learning curve reached a plateau fakeuihan
Campbell’s. Her learning process consisted primarily aheebering as-
pects of the earlier analysis of Uspanteko (i.e. the amalyefiected in the
grammar), noting subsequent changes in analysis, and/iegsbme incon-
sistencies in her labeling choices. Campbell, startingpfzero, needed much
more work to acquire proficiency with the language and takls 16 reflected
especially in his average annotation time per morphemeysimFigure 4.

Campbell noted clear patterns in his acquisition of a syittawodel for

23As a reminder, Kaan is the language-expert, and Campbékikanguage-novice.
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Figure 4. Average annotation time (in seconds per morphewe) annota-
tion rounds, averaged over all six conditions for each aatoat

the language: verbs became clear first, because in Uspamtbkoerbs take
aspect marking. Person marking was the key to his next migjoywhich was
the identification of relational nouns and possessed ndaatk,of which in-
flect with the ergative person markers (set A in traditionalén linguistics).
Adjectives were the third major area in which he felt confidefrhis labels,
since almost invariably they immediately precede the ndleg modify. The
most difficult distinctions, in his opinion, were senteno#ial morphemes,
variously labeled as adverbs, particles, or affirmatives.

A complicating factor for both annotators is that the daterkweoth
derivational and inflectional morphology, but the formenat consistently
analysed as such. In other words, in some cases the segimesitake deriva-
tional morphology into account and in others they do not.

Access to the Uspanteko-Spanish dictionary was esseoti@idmpbell to
make any progress understanding the language. In fact,ume femultane-
ous use of the digital and printed versions of the dictiortarpe the most
effective strategy. The digital version allows the use of¢ded search terms,
while the hard copy lets the user rapidly scan many pagesoésifand their
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examples) to get a broader picture of the language. At the saine, a dic-
tionary as a stand-alone resource is of course not suffitoenteveloping a
comprehensive knowledge of the linguistics of a language.

5.2 Annotator label accuracy

In section 4, the effectiveness of different levels of maetsupport was dis-
cussed with respect to the labeling accuracy of modelséedfinom the train-
ing data produced by the annotators. Accuracy of a modelatuated by
comparing its label predictions to the original (i.e. OKMaAjnotations on
a set of held-out texts. Thus the potential for learning easueste model is
affected by the accuracy of the annotators’ labels as cosdgarthe original
annotations.

Accuracy against OKMA annotations. Table 4 shows the overall accuracy
of the annotators’ labels for each condition (after 56 r@)ras measured
against the original OKMA annotations. As expecten¢ selection tends to
pick examples that are more difficult to label. Accuracy fotthannotators
suffers in bothunc-ns andunc-ds.

The fact that Campbell’s accuracy is generally higher thaarks is ini-
tially surprising; this is another result which highlighte differences and
challenges that arise when we bring active learning into-siorulated an-
notation contexts. We attribute this result to two diffdréactors. The first
is the speed of annotation; Campbell spent nearly twice ahrtime label-
ing the same number of examples. The more important fattough, again
has to do with prior experience with Uspanteko. In languagmichentation,
the analysis of the language is continually evolving. TheMd¥annotations
represent less a ground truth for the language than a reftectithe under-
standing of Uspanteko at the time that the original annmatiwere done.
Kaan recognized—often through the morphological segntientahown by
the annotation tool—several linguistic phenomena for Whiee analysis has
changed since the close of the project that resulted in thegrar, the dic-
tionary, and the corpu¥.As a result, her labels in cases diverge from those
of the original corpus.

Annotator accuracy by round. Though annotator speed clearly improves
over time, the same correlation does not hold for the acguwhthe annota-
tors’ labels. Figure 5 plots annotator label accuracy bydoof annotatiort?
Despite showing lower label accuracy, faster annotatitesrallowed Kaan
to achieve higher accuracy in much less time.

24This is the main reason for providing the ‘Flag annotatidréckbox as part of the annotation
tool interface.

25The left terminus of each plot line is artificially high, apibts the accuracy of the 10-clause
seed set, which is drawn directly from the OKMA data.
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expert | non-expert
segns 73.17%| 75.09%
rand-ns | 69.90%| 74.37%
unc-ns | 61.23% 60.04%
seqds 67.48%| 73.13%
rand-ds | 68.34%| 73.03%
unc-ds | 59.79%| 60.27%

Table 4: Overall accuracy of annotators’ labels, measugainat OKMA
annotations.
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Figure 5: Single round accuracy per round for each expettitype by: (a)
expert annotator (Kaan), (b) non-expert annotator (Cattjpbe
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The ESP error. Another significant source of divergence for Kaan from the
OKMA annotations arises from one individual label. Durihg tlean-up pro-
cess, the labdESP was introduced for labeling Spanish loans or insertions
(such as the adverb/discourse markatoncek It gradually became clear
that such tokens are very inconsistently labeled in thémalgorpus, usually
with catch-all categories like particle or adverb. For eptamthe Spanish
loannomagqsegmented, perhaps controversiallynas mas) often seems to
function as an adverb in Uspanteko clauses (e.g. (8); tekt@ause 209).

(8) jii'n kila" ge nomas
Si alli nada nas.

In this case, the OKMA standard glosses both morphemes aslzsiADV),
Kaan labels both witlESP, and Campbell provides a split labeling, attempt-
ing to capture the function of each morphemEG- ADV. Arguments can be
made for each of the three labelings.

Further analysis is needed to determine the role such wdaysip the
clauses they appear in: are they the product of code-swgéHbo they par-
ticipate in the syntax of Uspanteko? Because this quesgamins unre-
solved, and in order not to influence the predictions of thehiree learner
with spurious label assignments, the decision was made t& tha tokens
simply as being of Spanish origin. Example (9) (text 068,askr110) con-
tains two examples of this type of wordensesandpwes—along with each
annotator’s labels for the clause.

(9) TexT:tonses wiyn pwes in ajnuch’ na+

MORPH tOnses wi ynpwesin aj-nuch’ na
KAAN: ESP ??? ESP AlS ?7??-ADJ PART
Camp: ADV EXS ADV PRONGNT-ADJ PART

Entonces yo pues hera pedjze

Over time, the two annotators developed very different eotiens for using
the ESP label. Kaan applied it to 2086 of 24129 tokens (8.65%) and Gam
bell applied it to only 221 of 22819 tokens (0.97%). Becalmelabel was
introduced well after the OKMA corpus was completed, it doesappear at
all in the original annotations, so any token labelsP is scored as incor-
rect when compared to the OKMA annotations; this alone ada®rihan 7
percentage points to Kaan'’s total label error.

5.3 Annotator agreement

To get a more complete picture of the effectiveness of difiedevels of
machine support, it is important to evaluate each anndsadmcuracy not



30/LILT VOLUME X, ISSUEY NovEMBER 2009
exp
non seg-ns rand-ns unc-ns seqg-ds rand-ds unc-ds
seqg-ns 69.91% (523) | 70.82% (42) | 62.42% (48) | 72.35% (54) | 74.25% (28) | 67.82% (47)
rand-ns 71.32% (48) | 83.94% (39) | 66.56% (47) | 66.15% (43) | 73.75% (42) | 67.55% (52)
unc-ns 66.31% (48) | 67.87% (53) | 62.31% (301) | 58.87% (51) | 73.31% (40) | 61.10% (298)
seq-ds 73.35% (60) | 75.56% (34) | 56.39% (37) | 60.02% (540) | 66.00% (44) | 61.01% (36)
rand-ds 68.67% (50) | 76.40% (63) | 66.67% (58) | 65.88% (47) | 76.33% (42) | 66.99% (64)
unc-ds 65.41% (50) | 67.98% (55) | 60.43% (263) | 58.13% (38) | 70.74% (57) | 60.40% (275)

Table 5: Inter-annotator agreement: expert v. non-expertentage of mor-
phemes in agreement, (number of duplicate clauses)

only against the OKMA annotations, but also against eackratind even
against themselves. Because each of the twelve settingstédar-selection-
suggestion) used examples selected from the same globlabpoolabeled
examples, some duplicate clause annotation occurred ¢brsr of exper-
imental conditions. Multiple labelings of a clause allow tostake simple
agreement measures of both inter-annotator agreementénagdannotator
consistency.

Inter-annotator agreement. Table 5 shows agreement between annotators,
measured in percent agreement on morphemes in clausesddtyeboth an-
notators. The column headings refer to Kaan’s experimérespw headings
refer to Campbell’s, and the number in parentheses is thdauaf duplicate
clauses for that pair of annotator-selection-suggestoitions. The overall
average inter-annotator agreement for duplicate clauas%.56%. This is
another indicator of the divergence from the OKMA standaralgses noted

in section 5.2, for Kaan in particular.

Note that the sets of clauses selected for the four pairihgscertainty
selection cases show a very high level of duplication. Nopssingly, the
level of agreement for thenc-unc pairs is consistently well below the over-
all average agreement, with an average agreement of ju%l.This find-
ing supports the expected result that uncertainty-badedt&m does indeed
select clauses that are more difficult for human annotatdesoel.

Intra-annotator consistency. The differences between annotators also ap-
pear when we consider the consistency of each annotatbebrg decisions.
Table 6 and Table 7 (expert and non-expert, respectivelgyvsfor each
pair of experimental conditions, the percentage of morpeabeled consis-
tently by that annotator. Kaan’s overall average percerdeagent (88.38%)

is higher that Campbell’s (81.64%), suggesting that shentaisied a more
consistent mental model of the language, but one that dieagn some areas
with the OKMA annotations.
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exp

exp seg-ns ‘ rand-ns ‘ unc-ns ‘ seqg-ds ‘ rand-ds ‘unc—ds‘
seq-ns —
rand-ns 95.00% (41) —
unc-ns 87.10% (56) | 90.91% (57) —
seq-ds 92.39% (60) | 87.57% (35) | 81.35% (41) —
rand-ds 91.02% (28) | 90.94% (50) | 89.10% (46) | 86.13% (42) —
unc-ds 88.83% (51) | 89.53% (57) | 87.82% (332) | 82.14% (42) | 87.06% (49) | —
Table 6: Intra-annotator consistency, expert annotator
non
non seg-ns ‘ rand-ns ‘ unc-ns ‘ seqg-ds ‘ rand-ds unc-ds
seq-ns —
rand-ns 90.11% (49) —
unc-ns 80.80% (44) | 81.68% (54) —
seq-ds 90.00% (54) | 87.94% (44) | 77.97% (48) —
rand-ds 90.15% (52) | 86.64% (45) | 79.46% (62) | 81.43% (44) —
unc-ds 84.15% (47) | 78.55% (52) | 77.68% (328)| 78.81% (35)| 77.95% (60) —

Table 7: Intra-annotator consistency, non-expert anaptat

5.4 Reflections on the annotation experience

Glossing the Uspanteko texts is a tagging task. In that océgpe annota-
tors had the usual role of providing labels for items pradtefor annotation.
However, in these experiments annotation occurs in coatidin with ma-

chine learning. In some settings the items to be labeled salezted by the
machine, guided by the previously supplied labels. So, eénaittive learning
cases, the annotator’s labels affected which examples sedeeted: in this
way, the annotator and machine labeler are tightly couplede, we consider
the utility of the annotation tool and the semi-automatedcgation process
from the perspective of the annotators.

Annotation tool. Folding machine learning into an annotation tool raises
some interesting issues. For example, when offering lalgastions to the
annotators, the OpenNLP IGT Editor presents the labels @parate list, as
seen in Figure 2, but removes the suggested labels from phetaétically-
ordered drop-down bank of possible labels. Both annotatmrsmented that
the resultant change in the ordering of the labels at tim@sexd down the
labeling process, as they could not rely on their memoryefibsition of the
labels within the drop-down bank.

Other issues were raised by the facts that the tool was lintiténandling
one stage of the process of producing I&Tdthat the tool was designed for
specific experimental purposes. This restriction forcesahnotators to ac-
cept the morphological segmentation as offered. The onesssion made in
the tool design was to offer a checkbox for flagging examlasrieeded fur-
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ther examination. The most common reason for flagging, byvMas to mark
clauses with segmentation errors. In order to get accuraterheasurements
for labeling, it was necessary to cut out any additional il tasks, but in
a working documentation project, this feature would likeBmper the effi-
ciency of the annotators. Both annotators also noted tlegtwould like to
have access to the lexical gloss for stems (i.e. the sterslation) as well as
the part-of-speech labels. These limitations are pertrgmain obstacles to
this tool being useful in the early stages of a documentatioject.

Labeling-retraining cycle. Active learning is inherently cyclical: (1) a
model is trained, (2) examples are selected, (3) exampisaheled; (1)
the model is retrained, and so forth. In simulation studsésps (1) and (2)
tend to be time- and compute-intensive, and step (3) isatrifihis changes
of course when we use real annotators, when step (3) becomesoist time-
consuming step of the process. There is, however, still @ tiost associated
with steps (1) and (2), and the annotator generally has towigle those
steps are completed and a new batch of examples is selectéabéing.
This lag time may cause frustration, distraction, boredomgven a much
needed break for the annotator.

In addition, waiting time needs to be treated as part of thee ttost of
annotation. We did not take this into account in our expentaeHowever,
aspects of both the experimental design and the implementat the an-
notation tool combine such that annotator lag time is neaslystant across
annotators and across experimental conditions, thus ridimigthe impact of
waiting time on our results.

First, for each annotator we alternate between experirhemtaitions, in
order to mitigate the effect of the annotator’s learningveuEach selection-
suggestion strategy combination is set up as a separateregpe, and ex-
amples are selected in batches of 10 clauses. In each rousmhotation,
the annotator labels a total of 60 clauses, 10 for each expeatal condition.
The annotation tool is designed to work on one experimenttah@, so to
switch experiments the annotator restarts the tool andamspted to select
the desired experiment. (Note that the annotators were aneenf the specific
experimental conditions for each set.) Thus, experimeiitiching time is the
same for all experiments. Second, our models are simpletharttaining set
consists of only those clauses already labeled by the atanota the models
train quickly.

Steps (1) and (2) can occur either immediately before or idiately after
the batch of clauses has been labeled, and the sequencerisitetd by the
annotator. This provides the annotator at least a small ataficontrol, so
he/she can either proceed directly to the next experimemadrout the short
training time before switching. Also, due to the order of siteps, the model



COMPUTATIONAL STRATEGIES FOR REDUCING ANNOTATION EFFORT INANGUAGE DOCUMENTATION/ 33

training feels more like a part of the active switching precand less like
passive time sitting and waiting for the machine to finish.

Iterative model development. With a setup that gives annotators access to
the predictions of the classifier, it is important to ask taatwxtent the anno-
tators are influenced by seeing those predictions. Here wedfquite differ-
ent responses from the two annotators.

Kaan noted that the machine’s accuracy seemed to improveime and
that bad suggestions from the machine sometimes slowedowar, s she
had to wade through a number of wrong labels to get to the Eimlanted.
She also noted that at some points she found herself acgebénmachine’s
suggested label in the case of homophonous morphemes anddtitought
the label, though too late to make any changes. In other witrdsippearance
of one of two or more possible labels for a morpheme in somsesput the
other possible choices out of mind. Once she noticed thipdrEpg, she
started taking more care with such cases. We note that thegeexisely the
kinds of cases for which the machine needs additional trgidiata to learn
to distinguish the two different analyses for the morpheBueh a conspiracy
between the annotator and the model can easily push the rofftreck.

Campbell had a more complex relationship with the machiaekr. Near
the beginning of the annotation process, seeing the matdiieds was actu-
ally a hindrance, compared to the no-suggest cases, in v@daahpbell was
shown the labels he had previously assigned to the givenhmearps. This
being a hindrance is a function of the annotator’s own legyprocess. In the
beginning, he spent quite a lot of time selecting a label &mhemorpheme,
consulting the dictionary extensively and thinking a lobabthe likely role
of the morpheme. In other words, he was deeply engaged inifitig anal-
ysis. Thus he trusted the labels he had previously choseditua lot of
second-guessing and rechecking of the suggestions madie loyachine. In
the future, it would be helpful to highlight machine suggmst when they
correspond to labels seen with previous occurrences of trpmeme.

Later in the annotation process, as the model began to make acou-
rate predictions more consistently, he began to trust thehina suggestions
much more, provided they were consistent with his own cummsntal syn-
tactic model for the language. Once Campbell trusted thénmadabels to a
greater extent, having access to them saved a lot of timedugcieg (often to
zero) the number of clicks required to select the desiredlldbterestingly,
Campbell grew to be quite aware of the varied model accuratye differ-
ent experimental settings. In fact, though he didn’t knois,this impression
of the most accurate model is indeed the same as his bestpérf model
(random selection with machine labels).
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Epiphany effect. Without having knowledge of the accuracy of the mod-
els trained on his labels, Campbell commented on havingakpgeints of
‘epiphany’ after which he had an easier time with the animmairhese were
points at which he resolved his analysis of some frequestthurring aspect
of linguistic analysis, and these discoveries show up agisimgraphs chart-
ing the performance of the models trained on his data.

Campbell found it hard to keep track of all the changes he walsimg
all along in his mental model of the Uspanteko grammar. leaped to him
that some of the periods where it seemed the machine wasngligpuld
have in fact been cases of it no longer matching his analfgs, he did not
know how long it would take for the machine’s predictions talslize after
changing his analysis of something. Would it weight hisri&ags greater than
his earlier tags? Would an an erroneous analysis early on inwauld would
take a while for the machine to amass enough correctly gliaséens of such
a morpheme to outweigh all of the incorrectly glossed toReGkearly, it
would be useful to have some transparency in terms of therkief analysis
of certain morphemes or constructions and also the abdigxplain why a
model is making a decision one way or another.

Handling changes in analysis. Language documentation involves both pre-
serving examples of a language in use and discovering theenat the lan-
guage through ongoing linguistic analysis; the process ame at all fit a
pipeline model. Both annotators noted changes in theiryapal of partic-
ular phenomena as they proceeded with annotation. In fach annotator
discovered a previously-unknown aspect of the morphogyofteerbs in Us-
panteko. In some cases, a jump in model accuracy followegghany in
the annotator’s own model of the language.

A deficiency of our annotation tool, and indeed a challengeafty tool
used to aid production of IGT, is that it does not allow the@tator to rean-
notate previous clauses as the analysis changes. Onelp@gsgiboach would
be to couple global search (i.e. search of the entire prelyjeannotated cor-
pus) with a reannotation function. This would allow an abat to view a
concordance of clauses containing the morpheme in questidito pick and
choose which of the labels should be changed.

One such example concerns the morphelinasdri. Both function some-
times like prepositions and sometimes like demonstrati@asnpbell began
the experiment glossing all instances of both morphemesagpitions. At
some point he switched to labeling them all as demonstistared finally, af-
ter about 30 rounds of annotation, he began to distingussivib functions.
Kaan also noticed an increase in her accuracy and consjsbeactime.
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6 Conclusion

Based on the results of the work and experiments describibisipaper, we
believe there is clear potential for fruitful, mutually kdicial collaboration
between language documentation and computational litigslis

Challenges and benefits for language documentationDocumenting and
describing an endangered language is a complex task witteadycestab-
lished best methodology or workflaf®.Each language offers its own set of
challenges, and each documentation project tends to geivelown set of so-
lutions. An additional confound to consistency in the doeatation process
is the fact that most such projects are individual or smedlig endeavors on
small budgets, with little or no institutional guidance bg greater documen-
tary linguistics community’

Even very simple computational strategies, such as basjtiag for text
manipulation and data management can be very effectivefiziesitly im-
proving the quality and consistency of transcriptionspsfations, and IGT
annotations from language documentation projects. Mutheofvork of doc-
umentation is data-intensive and corpus-based, and mahg pfoblems en-
countered could greatly benefit from knowing a scriptingglaage such as
Perl, Python or Ruby. In addition, these skills and use afidadad formats
both greatly increase the reusability of such data.

Machine learning and active learning approaches, whiléaitdy more
complex and more challenging to implement, show some pmmiais par-
tially automating and thus speeding up the creation of IGSing machine
assistance, we consistently learned more accurate maumis,quickly, than
was possible using the standard strategy of sequentiataiomowith no ma-
chine label suggestions. These learning methods need diapaithat is in a
well-organized and machine-readable format, but they algput this type
of data, supporting the possibility for future work on laage technologies
for the language being documented.

Challenges and benefits for computational linguistics.Questions arise in
the context of documentary linguistics that present irstiimg challenges for
computational linguistics. IGT creation is actually a baddi the standard
pipeline model frequently used in computational lingaistbecause the dif-
ferent stages of analysis—morphological analysis/seggtien, labeling of

morphemes, and sometimes even translation—overlap. Anottallenge is
the absence of strict annotation guidelines; both anaysisannotation are

26Although strong recommendations exist for ensuring thgéwity and robust accessibil-
ity of digitized language data; see for example Bird and 3im(2003) and the results of the
EMELD projectht t p: / / enel d. or g.

27Some personal perspectives on the difficulties faced by grajicts can be found in New-
man (1992), Wilkins (1992), Rice (2001).
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continually evolving, each informing the other.

Some of the challenges we encountered raise importantaerasions for
direct practical application of machine learning and alkdarning. First, the
interactions between the human annotator and the maclraneeleare very
complex and must be carefully considered and thoroughlyesséd for ef-
fective integration of the two. In other words, unanticezthhuman factors
can diminish the potential effectiveness of input from thachiine learner.
Second, for active learning to be effective, some sort of éhofithe anno-
tator needs to be incorporated into example selectioregfieg. Finally, it is
important that annotation software be flexible enough wafbr revision as
the analysis of the language changes; at the minimum, catipoal support
can assist with propagating such changes back to previdaistéfed clauses.

Research in computational linguistics also stands to hefinefin expand-
ing the range of languages it works with. Standardized, nacfeadable
IGT annotations for less-studied languages and the diygrseaomena they
exhibit would enable a much wider cross-linguistic validatof models used
in computational linguistics. Also, machine learning teicfues have mostly
been used in scenarios where large volumes of data are l@eailhere is
thus an opportunity to evaluate the impact of models thatrasdess training
material, e.g. through linguistically informed priors.

Infrastructure. Creating the necessary software infrastructure to build an
active learning system is a substantial hurdle. Creatimgonotation tool to
interface between data, annotator, and machine classfigiired consider-
able effort, especially to ensure it was easy to use for timetators. If ma-
chine learning is to be of any assistance to language dodatiam beyond
individual projects such as ours, it is clear that a basigtalignfrastructure

is necessary, and that this infrastructure must take intowatt both machine
and human factors.

We envision a broadly-accessible, web-based system flabarhtive an-
notation of texts, possibly based on the model used with Am'aaMechan-
ical Turk (AMT). Using AMT, labels can be obtained for a frict of the
usual cost by parceling out instances to self-selectedexpert annotators.
AMT labels have been found to show high agreement with pterdened
gold-standard labels for some natural language procetaskg, such as af-
fect recognition and recognizing textual entailment (Sredval., 2008). By
definition, though, AMT labels are non-expert labels and cblikely to be
useful for work in language documentation. NeverthelesdTAtands as an
example of the potential for massive, global collaborationtasks involv-
ing textual data. With an AMT-like system specifically tawegkfor IGT and
involving a community of documentary linguists as annatgtthe documen-
tation process could be sped up significantly.
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Though we envision this system as facilitating collabamtnot just be-
tween many humans, but also between humans and machiseshitidantly
clear that the machine learner must be tuned to the needs biithan. Ques-
tions of human-computer interaction must be carefully asred, the learner
must model what the humattuallydoes, and the human must always retain
veto power.
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