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Abstract
With the urgent need to document the world’s dying languages, it is important
to explore ways to speed up language documentation efforts.One promising
avenue is to use techniques from computational linguisticsto automate some
of the process. Here we consider unsupervised morphological segmentation
and active learning for creating interlinear glossed text (IGT) for the Mayan
language Uspanteko. The practical goal is to produce a totally annotated cor-
pus that is as accurate as possible given limited time for manual annotation.
We discuss results from several experiments that suggest there is indeed much
promise in these methods but also show that further development is necessary
to make them robustly useful for a wide range of conditions and tasks. We also
provide a detailed discussion of how two documentary linguists perceived
machine support in IGT production and how their annotation performance
varied with different levels of machine support.
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1 Introduction

With languages dying at the rate of two each month (Crystal, 2000), there
is an urgent need to create linguistically detailed recordsof endangered lan-
guages. Broadly outlined, documentation of a language begins with the devel-
opment of a collaboration between a community of speakers ofthe language
and an individual or group, either within or outside the community, interested
in pursuing the work of documenting the language. The next stage is collec-
tion (by recording) of audio/video data and then transcription of the recorded
data. This often includes developing an orthography for thelanguage. Ide-
ally, some portion of the transcribed texts is also translated into a language
of broader communication, possibly followed by a stage of linguistic anal-
ysis and description. This analysis stage involves detailed, time-consuming
linguistic annotation of the transcribed texts. This is thestage that we are
interested in supporting with computational assistance. The resulting collec-
tion of data and analyses can then be used to create a variety of materials,
including grammars, dictionaries, language teaching and learning materials,
spell-checkers, websites, and other community-oriented language resources.
Ideally, future access to the language data is ensured via archiving, publica-
tion, and other methods of storage and/or dissemination.

Computational linguistics can play an important role in reducing the work-
load in such efforts: models that learn from data can be used to speed up the
documentation process and to pinpoint interesting examples. This paper de-
tails a set of computational strategies for aiding languagedocumentation and
experiments that test the effectiveness of those strategies in a realistic lan-
guage documentation context. Specifically, we examine the effectiveness of
a range of computational learning approaches, from unsupervised (inducing
structure from raw text) to fully-supervised (learning from previous human
annotation), for assisting the production ofinterlinear glossed text(IGT) for
the Mayan language Uspanteko.

IGT is a multi-level format for presentation of linguistic data and analy-
sis used in nearly all documentary work. It serves as the focal point of the
interplay between analysis and documentation and greatly facilitates later ex-
ploration and analysis of the language. However, IGT annotations are time
consuming to create entirely by hand, and both human and financial resources
are extremely limited in this domain. Thus, language documentation presents
an interesting test case for computational assistance to ensure consistency and
maintainability of analyses and to speed up annotation in a real-life context of
great import. There are a number of barriers and opportunities in attempting
to do so. In this paper, we specifically address:

1. Standardization and representation (section 2).The data created by
most documentation projects uses idiosyncratic formats and usually



COMPUTATIONAL STRATEGIES FOR REDUCING ANNOTATION EFFORT INLANGUAGE DOCUMENTATION / 3

contains errors that require considerable cleanup before they can be
processed by computational tools. The lack of a single standard format
for IGT means that representations and structures used by one project
are unlikely to be compatible with those used by other projects, limit-
ing the reusability of painstakingly annotated data. We discuss cleaning
up an existing corpus of Uspanteko for our experiments and converting
it to IGT-XML (Palmer and Erk, 2007).

2. Analysis. IGT involves morphological segmentation, translation of
stems, understanding the contribution of individual morphemes to the
meaning of the sentence, and labeling the glosses of stems and mor-
phemes. We test whether some of these decisions can be made more
efficiently with computational help for morphology and glossing.

(a) Morphology (section 3).Words are segmented into their stems
and affixes. We discuss unsupervised methods for identifying
concatenative stems and affixes from raw texts as a preprocessing
step for IGT creation (Moon and Erk, 2008, Moon et al., 2009).

(b) Glossing (section 4).Stems and affixes are given labels that in-
dicate their grammatical function. We summarize and expandon
our previous work employing active learning and semi-automated
labeling to reduce the cost of annotating these labels (Palmer
et al., 2009, Baldridge and Palmer, 2009).

3. Interaction of linguists with machine decisions (section 5). We con-
sider the influence of machine decisions on documentary linguists who
are developing their own analysis of a language with computational
support. We consider this for gloss labeling for Uspanteko with respect
to a documentary linguist who is an expert in the language (Telma Kaan
Pixabaj) and one who had no prior experience with it (Eric Campbell).

We also argue that language documentation raises interesting and unique
challenges for computational linguistics and language technologies. Textual
data from language documentation presents different issues, both linguistic
and non-linguistic, than extensively-adjudicated data from well-studied lan-
guages. The challenges include (a) dealing with simple, butannoying, format-
ting problems, (b) working with a level of analysis (IGT) that is undeniably
important in linguistics but is rarely considered by computational linguists
(however, see Xia and Lewis (2007, 2008), Lewis and Xia (2008)), and (c)
working with constantly changing hypotheses about how to appropriately an-
alyze a language. Furthermore, though we describe documentation as consist-
ing of several distinct stages, in reality different stagesof the process overlap.
This is especially true of the analysis process, which is in fact a discovery
process in which morphological analysis/segmentation, morpheme labeling,
and even transcription and translation each inform the other.
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Additionally, language documentation provides the opportunity to work
with a wider range of languages, including many that are typologically dif-
ferent from the languages of the most widely-used corpora incomputational
linguistics. A computational model based on a handful of related, dominant,
or often-recycled languages does not stand up to scrutiny aswell as a model
that has been tested on a broad selection of the world’s languages from diverse
language groups. This setting also offers the chance to testcomputational ap-
proaches like active learning in a live annotation context with real human
annotators, rather thanpost hocon existing data sets, as it is typically done.

We report three main findings. First, basic computational skills like script-
ing and data management can be very effective in improving the quality
and consistency of data annotated in language documentation projects, as
well as increasing the data’s suitability for reuse, both byhumans and by
machines. Second, both fully-automatic morphological segmentation and
partially-automatic morpheme glossing show some promise for speeding up
IGT production, if handled carefully. And third, to be effective, any com-
putational support for language documentation must take into account the
complex interactions between human annotators and automated analysis.

2 Data standardization and representation

We consider computational support for two tasks in creatingIGT: morpheme
segmentation and gloss labeling. To provide a realistic language documen-
tation scenario, we work with a collection of existing textsfrom the Mayan
language Uspanteko as the reference corpus for our experiments.

The original Uspanteko data contains a number of inconsistencies and in-
complete annotations.1 It is presented in a loose space-delimited format. To
enable reliable extraction of morpheme segmentation and glosses for measur-
ing the performance of our models, it was necessary to clean up such anno-
tation gaps and errors. The cleaned-up corpus also is more suitable for reuse
by linguists and other interested parties, particularly those lacking language-
specific knowledge and/or linguistic training. The second stage of preparing
the corpus was to convert the annotation to IGT-XML (Palmer and Erk, 2007),
an extensible XML format for IGT that facilitates creation of tools for work-
ing with the data and helps ensure its longevity for future use. The resulting
cleaned and converted corpus may support future work on language technolo-
gies for Uspanteko.

Here, we discuss high-level considerations for digital representations for
language documentation, our choices and procedures for thedata preparation
step, division of the resulting materials for experimentation, and the hybrid

1In our experience, many corpora produced by language documentation projects contain sim-
ilar inconsistencies and annotation gaps.
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glosses we use in the semi-automated annotation experiments.2

2.1 Digital data management for language documentation

One important aim of language documentation is to record andpreserve lan-
guage data in ways that will be accessible and useful to different users (for ex-
ample, native speakers, community language teachers, or linguists of various
stripes) both now and in the future. Bird and Simons (2003) isan extensive
discussion of requirements for achieving interoperability and portability in
language documentation. Different documentation effortsmay require differ-
ent types of annotation, and documentation projects currently use a number
of different (often incompatible) tools and formats for managing their efforts.
In other words, there is no single standard approach to the documentation
workflow.

To better understand data management needs and current practices in lan-
guage documentation, we conducted an informal survey of linguists in the
University of Texas Linguistics Department who were working on docu-
mentation projects. The main finding of our small survey is that approaches
vary widely. One was at the early stage of eliciting individual lexical items.
Two of five projects maintained transcription and translation tiers, but no
morpheme-level glossing. Two more had digitized texts withfull IGT: tran-
scription, translation, and morpheme glossing. There was also wide variation
in software used for transcription and/or glossing. Two projects used Shoe-
box/Toolbox3, two used ELAN4 (one of those in conjunction with Microsoft
Excel) and the fifth used a combination of Microsoft Word and Microsoft
Access.

Although methods, technologies, and formats vary widely even across this
small sample, linguistic analysis and IGT production for language documen-
tation involve a common set of tasks to accomplish and problems to resolve.
The following is a list of underlying components required for text glossing
and interlinearization:5

1. Development of an orthography for the language and a set oflabels to
be used for glossing.

2This section focuses on attaininginternal consistency for a dataset. We do not here ad-
dress achievingexternally-orientedconsistency through use of annotation or other standards, as
it is outside the scope of this work. Development and use of such standards is a complex issue
with an extensive literature. See, among others, Bird and Simons (2003), Farrar and Langen-
doen (2003), Barwick and Thieberger (2006), Farrar and Lewis (2007), and the outcomes and
proceedings of the EMELD project and associated workshops (http:\\emeld.org). An-
other excellent collection of relevant resources and linkscan be found on the Cyberling wiki
(http:elanguage.net/cyberling09).

3http://www.sil.org/computing/shoebox
4http://www.lat-mpi.eu/tools/elan
5We make no claim that this is a comprehensive, fully representative list.
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2. Linguistic analysis, including segmentation of word forms, obtaining
stem translations, and determining the contributions of non-stem mor-
phemes to meaning.

3. Labeling stems and morphemes with glosses or parts-of-speech.
4. Iterative revision of the linguistic analysis, making appropriate changes

to orthography, label set, segmentation, and gloss labels.
5. Checking consistency of labelings and analysis.
6. General digital management of data at various stages of annotation.

We focus our efforts on items 2, 3, and 4. We assume previous develop-
ment of an orthography, basic understanding of the language’s morphology,
and a set of pre-defined gloss labels, as dictated by the documentation project.
Even more than most standard annotation in computational linguistics, anno-
tation in language documentation is itself a process of discovery. The pipeline
model used in much of natural language processing is inappropriate here, pre-
senting another significant challenge to the use of computational support.

2.2 OKMA Uspanteko corpus

In order to evaluate fully or partially automated analysis,existing annotations
are needed for comparison to the predictions of the automated system. Our
reference corpus is a set of texts (Kaan Pixabaj et al., 2007a) in the Mayan
language Uspanteko. Uspanteko is a member of the K’ichee’ branch of the
Mayan language family and is spoken by approximately 1320 people, pri-
marily in the Quiché Department in west-central Guatemala(Richards, 2003).
The texts were collected, transcribed, translated, and annotated as part of an
OKMA Mayan language documentation project6 and are currently accessible
via the Archive of Indigenous Languages of Latin America (AILLA). 7

The portion of the Uspanteko corpus we use contains 67 texts with various
degrees of annotation. All 67 texts have been transcribed, several translated
but not glossed, and 32 of the texts have full transcriptions, translations, mor-
phological segmentation, and glossing.8 The transcribed and translated texts
are like the Uspanteko sample shown below (text 068, clauses283-287):

(1) a. Uspanteko:Non li in yolow rk’il kita’ tinch’ab’ex laj inyolj iin, si
no ke laj yolj jqaaj tinch’ab’ej i non qe li xk’am rib’ chuwe, non
qe li lajori non li iin yolow rk’ilaq.

b. Spanish:Sólo aśı yo aprend́ı con él. No le habĺe en mi idioma.
Sino que en el idioma su papá le habĺo. Y śolo aśı me fui acos-

6http://www.okma.org
7http://www.ailla.utexas.org
8See Table 2 for additional details. The set of texts available at AILLA varies somewhat from

the set we used.
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tumbrando. Śolo aśı ahora yo platico con ellos.

c. English:And so I learned with him. I did not speak to him in my
language [K’ichee’]. But his father spoke to him in HIS language
[Uspanteko]. That’s how I got used to it, and so now I speak with
them.

The glossed texts available to us are of four different genres. Five are oral
histories, usually having to do with the history of the village and the com-
munity, and another five are personal experience texts describing events from
the lives of individual people in the community. One text is arecipe, another
is an advice text describing better ways for the community toprotect the en-
vironment, and the remaining twenty texts are stories, primarily folk stories
and children’s stories. This is a small dataset by current standards in compu-
tational linguistics, but it is rather large for a documentation project.

2.3 Interlinear Glossed Text

Interlinear glossed text is a flexible and efficient way of presenting multiple
levels of linguistic analysis and can take many different forms (Bow et al.,
2003). IGT in a readily-accessible format is an important resource that can be
used to examine hypotheses on novel data (e.g. Xia and Lewis,2007, 2008,
Lewis and Xia, 2008). Furthermore, it can be used by educators and language
activists to create curriculum material for language education and promote the
survival of the language (Stiles, 1997, Malone, 2003, Biesele et al., 2009).

We focus here on a traditional four-line IGT format, with an additional
project-defined fifth tier. The TEXT line shows the original text. The next
two lines—MORPH and GLOSS—present a morphological segmentation of
the text and morpheme-by-morpheme glosses, respectively.The gloss line
typically includes both labels for grammatical morphemes (e.g.PL or COM)
and translations of stems (e.g.hablar “to speak, to speak to” oridioma“lan-
guage”). The fourth line (TRANS) is usually a translation of the original text.
The following is an example from Uspanteko:9

(2) TEXT: Kita’ tinch’ab’ej laj inyolj iin

(3) MORPH:
GLOSS:
POS:

kita’
NEG
PART

t-in-ch’abe-j
INC-E1S-hablar-SC
TAM-PERS-VT-SUF

laj
PREP
PREP

in-yolj
E1S-idioma
PERS-S

iin
yo
PRON

TRANS: ‘No le hablo en mi idioma.’
(‘I don’t speak to him in my language.’)

9KEY: E1S=singular first person ergative, INC=incompletive, PART=particle, PREP=preposition,
PRON=pronoun, NEG=negation, S=sustantivo (noun), SC=category suffix, SUF=suffix,
TAM=tense/aspect/mood, VT=transitive verb
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In addition to the four lines described above, OKMA uses a fifth tier (POS),
described as the word-class line. This line is a mix of traditional POS tags,
positional labels (e.g. suffix, prefix), and broader linguistic categories like
TAM for tense-aspect-mood.

The Leipzig Glossing Rules10 are a recent movement toward a standard-
ized system for IGT. The Leipzig Rules are proposed not as a fixed standard
but rather as a set of conventions which, for the most part, simply reflect
and codify what is already common practice in the linguistics community. It
should be noted that the Rules reflect common practice in thepresentation
of IGT. For machine-readability, we need a fixedstructuredrepresentation of
the data presented by IGT.

2.4 IGT-XML

For the purposes of electronic archiving and presentation,and in order to be
amenable to computational analysis and support, it is necessary to have a
machine-readable version of the corpus used by the documentation project.
This involves a number of choices about formats and standardization. This
section describes the IGT-XML format that we use.

The OKMA annotations were created using Shoebox/Toolbox, awidely-
used tool for lexicon management and IGT creation, particularly in language
documentation contexts. The custom, pre-XML whitespace delimited format
generated by Toolbox is perhaps the most widespread format for digital rep-
resentation of IGT, but the format makes normalization intoa structured rep-
resentation particularly challenging. In addition, in Toolbox the glossaries,
grammatical markers and segmentations are defined at the individual project
level, and there is a learning curve of varying acclivity foran incoming lin-
guist when learning how these are defined. The same problems with project
definitions arise when using other software such as Microsoft Excel or Word.

Since hardware changes over time, and most pieces of software and op-
erating systems rely on specific hardware to run, it is crucial to choose, for
long-term storage of data, a format that does not depend on the availability of
a single piece of software. In the ideal case, one would choose a data format
that is human-readable as well as machine-readable, to enable future users to
understand and access the data format even when all softwarethat previously
read the data has become obsolete.

For the experiments in semi-automatic and automatic analysis that we
were planning to do, one central requirement of the representation format
wasflexibility, in particular the ability to add or exchange layers of annota-
tion in a modular fashion. The format should be flexible as to which layers
of annotation are present, and in which order they are added.It should also

10http://www.eva.mpg.de/lingua/resources/glossing-rules.php
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<phrases>
<phrase ph_id="T1_P1">
<plaintext>xelch li+</plaintext>
<word text="xelch" wd_id="T1_P1_W1"/>
<word text="li" wd_id="T1_P1_W2"/>

</phrase>
</phrases>
<morphemes>

<phrase phrase_ref="T1_P1">
<morph morph_id="T1_P1_W1_M1" text="x-"/>
<morph morph_id="T1_P1_W1_M2" text="el"/>
<morph morph_id="T1_P1_W1_M3" text="-ch"/>
<morph morph_id="T1_P1_W2_M1" text="li"/>

</phrase
</morphemes>

Figure 1: Partial IGT-XML representation for two Uspantekowords. (trans-
lations:salio entonces; then he left.)

allow us to store, side by side, gold labels created by a humanannotator and
machine-created labels for the same layer of annotation.

XML formats fulfill all these requirements: They are human-readable as
well as machine-readable, and they are independent of any particular soft-
ware. We use the IGT-XML format (Palmer and Erk, 2007), amildly standoff
format. It uses globally unique IDs rather than XML embedding for linking
annotation layers. In particular,<morph> and <word> annotations are
kept separate. In this format, annotation layers can be added flexibly without
any change to existing layers. Figure 1 shows an example.11

In its minimal form, IGT-XML has three blocks, for phrases, morphemes,
and glosses, but it is extensible by further blocks, e.g., for POS-tags. It is also
possible to have different types of annotation at the same linguistic level, for
example manually created as well as automatically assignedPOS-tags.

The flexibility afforded by IGT-XML is useful not only for managing au-
tomatic and semi-automatic analyses, but also for storing manual annotation.
The structure of languages targeted in language documentation projects is
usually not as well-studied as the structure of more intensely studied lan-
guages like English. Consequently, linguistic analysis ofthe language data
is often tentative and subject to change. For this reason it is advantageous
to have different layers of annotation that are not coupled tightly, such that

11Earlier XML formats proposed for IGT (e.g. Hughes et al. (2004), Hughes et al. (2003), Bow
et al. (2003)) use representations which nest tiers of annotation one within the other. Strictly hier-
archical formats such as the one introduced by Hughes et al. (2003) limit flexibility of annotation
layers and are thus inconvenient for our purposes. In that model, the morphological analysis
of a word is stored within the representation for that word, such that the addition of another,
machine-generated morphological analysis would require changing the representation of each
word. A somewhat more flexible format is introduced in Schroeter and Thieberger (2006), but
that format too is largely tailored to flexibility in presentation rather than analysis.
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individual layers can be exchanged without affecting others.

2.5 Normalization of OKMA annotations

The examples of Uspanteko shown so far have been perfectly segmented, per-
fectly labeled, and perfectly aligned. Each morpheme is assigned precisely
one label; stem and affix status is consistently indicated byhyphenation (af-
fixes take hyphens, stems do not); and the crucial MORPH and GLOSS tiers
each contain the same number of elements. Consistency in labeling and align-
ment is essential for IGT data to be smoothly handled in our experiments. The
original annotations are often messier than this. In this section, we discuss the
data clean-up work that was undertaken by Palmer (a computational linguist)
and Kaan (an Uspanteko language expert), working side-by-side. This proved
to be a very effective combination of skills for a rapid and targeted effort to
improve the machine-readability and consistency of the corpus.

Textual data from endangered languages, many of which have never been
written down before, tend to require more preprocessing than text that was
written down to start with, even if that text is itself in an under-resourced
language. The orthography and the grammatical analyses that form the ba-
sis of the associated writing system are often in a state of flux during the
documentation process. In addition, the vast majority of documentary data
are from transcribed spoken texts, often spontaneous speech or story-telling,
with the usual dysfluencies, false starts, repetitions, andincomplete sentences.
The annotations of the transcriptions inherit this messiness. Finally, IGT ver-
sions of the texts are sometimes produced by annotators withvarying levels of
knowledge and/or expertise, both language-specific and pertaining to linguis-
tic analysis. In our case, all of these factors together resulted in IGT which
needed a lot of clean-up.

For this task, we applied standard scripting, concordancing, and search-
and-replace techniques, including heavy use of regular expressions. We aimed
for the simplest script or code possible to zoom in on potential errors without
having to hunt through the entire corpus to find them.

Grouping of annotation tiers. For each clause of labeled text, there should
be a text tier, a morpheme tier, a gloss tier, a word-class tier, and a translation
tier. In a whitespace-delimited format, grouping of annotation tiers is often
indicated by inserting a blank line between each clause-level grouping, and
errors in this grouping (e.g. extra blank linesbetweenrelated annotation tiers,
or absence of a blank line between tiers for two different clauses) are easy
for a human to diagnose but tedious to correct. At the same time, getting this
basic grouping right is essential for any subsequent automated processing. We
used a simple script to produce a list of suspect clauses requiring attention to
better target our manual review.
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CORRECT x- el -ch
TOO MUCH x- -el- -ch
TOO LITTLE x el ch
M IXED x- -el -ch

Table 1: Some hyphenation possibilities for a three morpheme word form.

Label consistency. Inconsistent labels occur reasonably frequently in lan-
guage documentation annotation. Some errors are typographical (akatypos,
e.g. labeling a future-tense morpheme withFIT instead ofFUT). Others stem
from a lack of agreement on conventions for capitalization and punctuation of
labels; in our case the label for third-person singular ergative marking showed
up in all the following permutations:E3S, E3s, e3s, E3S., E3s., e3s..
Straightforward UNIX command line utilities allowed us to quickly build a
list of all tags in the corpus, which at its largest containedover 200 differ-
ent tags. The list was adjudicated by Palmer with assistanceon several points
from Kaan, and a final list of 69 possible labels was agreed upon. Simple
search-and-replace functions took care of correcting these errors. Note that
this use of search-and-replace, together with concordancing, could also be
very useful to help the linguist back-propagate changes in analysis, orthogra-
phy, or labeling conventions that occurduringannotation.

Consistency of hyphenation. A challenge for representing IGT in a machine-
readable format, especially starting from a minimally-structured representa-
tion, is to treat each morpheme as an individual token while preserving the
links between words on one line and morphemes on the next. We use hy-
phenation conventions to indicate groups of morphemes associated with a
common word: prefixes get a right-side hyphen, suffixes get a left-side hy-
phen, and stems remain bare. Hyphenation patterns in the original texts var-
ied a great deal. For example, the word formx-el-ch (COM-salir-DIR)
could appear with many different hyphenations, some of which are shown in
Table 1. These are natural considerations for computational work, but they
may be utterly unimportant to the individual annotator or the documentation
project. We used a combination of automatic morpheme type identification
and targeted manual correction to address hyphenation errors.

Alignment of annotation tiers. It is also crucial to properly maintain links
between source text morphemes and the gloss labels assignedto them. Specif-
ically, we need to ensure that the MORPH, GLOSS, and POS lines all have the
same number of items. We again used scripting procedures to identify such
errors, but resolving them required manual review. Some misalignments come
from bad segmentation, as in (4) and (5). Here the number of elements in the
MORPH line does not match the number of elements in the GLOSS line. The
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problem in this case is a misanalysis ofyolow: it should be broken into two
morphemes (yol-ow) and glossedplaticar-AP.12

(4) TEXT: Non li in yolow rk’il

(5) MORPH:
GLOSS:
POS:

Non
DEM
DEM

li
DEM
DEM

in
yo
PRON

yolow
platicar
VI

r-k’il
AP
SUF

E3s.-SR
PERS SREL

TRANS: ‘Sólo ası́ yo aprendı́ con él.’

Other alignment errors come from gaps in annotation. Even among the 32
glossed texts, not all are fully annotated. Most include occasional instances
of partial annotation at the clause, word, or morpheme level. To maintain
tier-to-tier alignment, each morpheme needssomelabel on each tier, even if
only to indicate that the label is unknown. Some missing labels were filled in
by Kaan. Others were filled with a placeholder label (’???’). The version
of the corpus used in the experiments described below includes 468 known
morphemes labeled with’???’.13

Conversion to IGT-XML. Finally, once word-to-morphemeand morpheme-
to-gloss alignment problems had been resolved, we converted the cleaned an-
notations into IGT-XML (Palmer and Erk, 2007) using the Shoebox/Toolbox
interfaces provided in the Natural Language Toolkit (Robinson et al., 2007).
The conversion process is straightforward, but the many preprocessing steps
described here are crucial for making it so.

It is worth noting that documentary linguistics projects can benefit greatly
from performing a semi-automated clean-up process and converting formats
in this manner. The resulting corpus is much more useful for future corpus
and computational studies. In addition, the automated clean-up process can
be fruitful for linguistic analysis. On some occasions, thescripts uncovered
discrepancies in analysis or interesting error patterns that led to deeper anal-
ysis and new insights into some aspect of the language.

2.6 Organization of corpus and labels for experiments

The Uspanteko corpus was split into training, development,and held-out test
sets as detailed in Table 2. Texts were chosen for each split to obtain balance
with respect to genre and average clause length. These are small datasets, but
the size is realistic for computational work on endangered languages.

The two tasks we focus on for producing IGT are word segmentation (de-
termination of stems and affixes) and glossing each segment.Stems and af-

12KEY: AP=antipassive, DEM=demonstrative, E3S=singular third person ergative, PERS=person marking,
SR/SREL=relational noun, VI=intransitive verb

13There are 734 cases of the’???’ label which appear in cases of unrecoverable morphemes.
These are cases where the segmentation in the original corpus indicates the existence of a mor-
pheme without indicating its identity. Such morphemes appear as’??’ in the original corpus.
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Section Words Clauses W/C Texts
TRAIN 38802 8099 4.79 030,035,036,037,049,050,052,053,054,055

056,057,059,063,066,067,068,071,072,076,077
DEV 16792 3847 4.36 020,022,023,025,029
TEST 18704 3785 4.94 001,002,004,008a,014,016
TRANSL 7361 005,033
RAW 210157 003,006,007,009,010,011,012,013,017,018

019,021,024,026,027,031,032,034,041,047
048,060,061,062,064,069,070,073,074,075
080,081,110

Table 2: Detailed break-down of divisions in the corpus.

fixes each get a different type of gloss: the gloss of a stem is typically its
translation whereas the gloss of an affix is a label indicating its grammatical
role. The additional word-class line provides part-of-speech information for
the stems, such asVI for platicar.

The target representation for the semi-automated annotation studies in sec-
tion 4 is an additional tier which combines part-of-speech labels for stems
with gloss labels for affixes and stand-alone morphemes. Themain reason
for choosing this representation was to separate the stem translation task
(e.g.hablar for cha’be) from the glossing task. In an actual documenta-
tion project,both the stem translation and the part-of-speech label would be
provided as part of the glossing process. However, stem translation is a much
more indeterminate task, so we focus on predicting a refined set of gloss/POS
labels. Example (6) repeats the clause in (4), adding this new combined tier.
Stem labels are given in bold text, and affix labels in plain text.

(6) TEXT: Non li in yolow rk’il

(7) MORPH:
COMBO:

Non
DEM

li
DEM

in
PRON

yol-ow
VI -AP

r-k’il
E3S-SR

TRANS: ‘Sólo ası́ yo aprendı́ con él.’

A simple procedure was used to create the new tier. For each morpheme, if
a gloss label (such asDEM or E3S) appears on the gloss line (second line of
(3)), we select that label. If what appears is a stem translation, we instead
select the part-of-speech label from the next tier down (third line of (3)).

In the entire corpus, sixty-nine different labels appear inthis combined
tier. Table 3 shows the five most common part-of-speech labels (left) and the
five most common gloss labels (right). The most common label,S, accounts
for 11.3% of the tokens in the corpus.

We are currently working on making our cleaned up version of the corpus
available. Details will be posted to the EARL project website.14

14http://comp.ling.utexas.edu/earl
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S noun 7167 E3S sg.3p. ergative 3433
ADV adverb 6646 INC incompletive 2835
VT trans. verb 5122 COM completive 2586
VI intrans. verb 3638 PL plural 1905
PART particle 3443 SREL relational noun 1881

Table 3: Most common labels and their frequencies: POS labels on the left,
gloss labels on the right

3 Unsupervised preprocessing of morphology

In unsupervised learning, the machine learns from raw, unlabeled text, such
as transcribed speech from a language documentation project. While the pre-
vious section considered computational support that involves no learning or
prediction by the machine, this section discusses unsupervised learning of
morphology. This work directly targets the IGT-creation subtask of segment-
ing word forms into their component stems and affixes.

In this section, we present unsupervised approaches that can serve as a
preprocessing step to manual analysis. They focus on inducing the stems and
affixes and producing (possibly noisy) segmentations or ranked segmentation
candidates. We assume that the morphological pattern of thelanguage itself
— i.e. whether it is suffixal, prefixal, both, concatenative,templatic, etc. –
has already been determined. We consider it a reasonable assumption that
the linguist doing the analysis will have a good hypothesis on a language’s
morphological pattern at this level. Here, we deal only withlanguages that
are suffixal, prefixal, or both.

We frame our morphology induction problem as a dual problem of (a) clus-
tering of morphologically related word forms, and (b) segmentation of stems
and affixes. These are closely related tasks where knowledgeof one may ben-
efit the other. Below, we outline two approaches that we have examined for
unsupervised morpheme clustering and segmentation.

3.1 Cross-lingual projection

The first method that we present is that of Moon and Erk (2008).It uses bi-
texts (parallel texts) where linguistic resources are available for one of the
languages, and corresponding words in the two texts arealigned. Word align-
ment in a parallel corpus is a mapping from each word to one or more corre-
sponding words in the corresponding sentence in the other language (Brown
et al., 1990). Developed in the context of machine translation, word alignment
has also been used toproject linguistic information from a source language,
for which manual or automatic linguistic analyses are available (e.g. Spanish),
to a target language, for which they are not (e.g. Uspanteko). See Yarowsky
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et al. (2001), Yarowsky and Ngai (2001), Snyder and Barzilay(2008) for ap-
proaches that specifically deal with morphology induction.

Following the lead of Yarowsky et al. (2001) and Yarowsky andNgai
(2001), we use word alignments to project lemmatization information across
languages. The source language part of the parallel text is automatically an-
alyzed with part-of-speech and lemma information. All target language word
forms that have nonzero probability of occurring with a given source language
lemma/POS tag pair can potentially be word forms of a common lemma. Of
course, we need to filter out words that are synonyms but do notactually de-
rive from the same lemma. So we designate as the target “pseudo-lemma” the
target language word form with the highest probability of co-occurring with
the source language lemma, and we remove from the set of candidate word
forms all words that do not share a common prefix of length≥ 4 characters
with the target pseudo-lemma (this holds for suffixal languages; for prefixal
languages, common suffixes are checked).

We applied this approach of learning lemmatization throughprojection to
English as source language and German as target language. Weused the Ger-
man and English sections of the Europarl corpus (Koehn, 2005), and evalu-
ated against the German TIGER corpus (Brants et al., 2002), which has man-
ual lemma annotation. Evaluatedby type, the approach achieved 77.2% preci-
sion, 87.4% recall, and an F-score of 79.1%. Evaluationby tokenyields 83.6%
precision, 26.7% recall, and an F-score of 40.5%. This indicates that some
high-frequency items are missed, which is to be expected, ashigh-frequency
target items are most likely to be aligned with many different words in the
source language.

3.2 Unsupervised induction of morphological clusters using document
boundaries

One problem of the approach of Moon and Erk (2008)—as well as many
other methods for unsupervised morphological analysis (Harris, 1955, Hafer
and Weiss, 1974, Jacquemin, 1997, Gaussier, 1999, Goldsmith, 2001, Schone
and Jurafsky, 2001, Freitag, 2005, Demberg, 2007)—is its reliance on mul-
tiple parameters, such as the requirement of a prefix overlapwith the target
pseudo-lemma of at least 4 characters. This is problematic in a documen-
tary setting: Parameters that need manual tuning are especially bad since they
place an additional workload on the documentary linguist. But even param-
eters that are automatically calibrated on data are problematic since usually
the amounts of data available in a documentary setting are relatively small.

So the second approach that we present is that of Moon et al. (2009), which
attempts to eliminate parameters as much as possible. A key idea is to exploit
a feature of documentary data (as well as most corpora) that is near universal–
that document boundaries are naturally preserved in these datasets. The sim-
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ple intuition is that if orthographically similar words occur within the same
document, there is a good chance that they are morphologically related.

The approach proceeds in four stages, again addressing the problems of
clustering and segmentation discussed above. (1) The first step is a segmen-
tation step, generating suffix candidates whenever a commonstem candidate
is found to occur with multiple different endings (and analogously for pre-
fixes). The criterion for identifying stem candidates is based on the intuition
that stems are longer than affixes.15 This step overgenerates, so we (2) filter
candidate affixes, retaining only those that show statistically significant co-
occurrence with shared stems. To test significance, we use pairwise χ2 tests.
The remaining steps are clustering steps: After (3) clustering affixes, we (4)
cluster stems based on affix clusters.

Document boundaries are utilized in stages (1) and (4). In step (1) we count
stem co-occurrence either by document or globally. In step (4) we cluster
stems that occur, either in the same document or globally, with affixes in the
same cluster.

The model was applied to two data sets from English and to the Uspan-
teko data set discussed in section 2. (Taesun) While English is not cur-
rently endangered and seems an inadequate subject for exploring the fea-
sibility of this model, English is thede factolanguage in unsupervised ap-
proaches to morphology (Schone and Jurafsky, 2000, Freitag, 2005, Poon
et al., 2009) and merits inclusion by strength of conventionalone. It is also
easy to evaluate models on, due to CELEX (Baayen et al., 1993)and the
easy availability of off-the-shelf lemmatizers and stemmers. On its own, En-
glish presents interesting challanges in terms of morphological analysis due
to its tendency to carry orthographical baggage from centuries past and
from a grab-bag of foreign languages, baggage that does not exist for lan-
guages that only recently acquired a writing system. We wereunable to in-
clude other truly endangered languages due to the difficultyof obtaining gold
evaluation standards and the lack of access to native speakers of such lan-
guages who could have manually evaluated our model output.For English,
we used a larger and a smaller dataset, of 9M and 187K word tokens, re-
spectively, to test the effect of dataset size on the model. In both cases, the
data came from theNew York Timessegment of the Gigaword Corpus.16 The
best performing model on both English datasets, large and small, used global
search for segmentation (step 1) and document-aware clustering (step 4).
Precision/recall/F-score for the larger and smaller data were77.7/70.2/73.8
and88.3/78.0/82.8 respectively. Awareness of document boundaries seems

15In the case of English, there are exceptions such asbe/be-ing, do/do-ing, but they are not
prevalent astypes.

16LDC catalog no.: LDC2003T05
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particularly helpful with smaller corpora: On the small corpus, the completely
document-aware approach (applied in steps 1+4) outperformed a completely
global approach, with the opposite results on the large corpus. All versions of
our model achieved higher F-scores than two benchmark systems, Linguistica
(Goldsmith, 2001) (Taesun) —which achieved 76.2 on the smaller and 61.8
on the larger—and Morfessor (Creutz and Lagus, 2007) (Taesun) —which
achieved 59.7 on the smaller and 66.3 on the larger.17

Uspanteko morphology is polysynthetic, with both productive prefixes and
productive suffixes, so we tested three different assumptions with the model:
that the language is only prefixal, only suffixal, and suffixal+prefixal with no
concatenative morphology. The best results were achieved by a fully global
model viewing Uspanteko as prefixal, with precision92.0, recall50.0, and
an F-score of64.8. (Taesun) Linguistica and Morfessor achieved F-score of
64.3 and 38.8, respectively.

The effectiveness of global segmentation (step 1) is due to the heuristic
that assumes that stems will be longer than affixes, and thereby suppresses
the generation of short stems. Short words account for most noise through
spurious affixes, and with the larger, global datasets, there is a greater chance
that a short word will be filtered out because it happens to have a large over-
lap with a longer unrelated word. Document based clusteringis particularly
effective when coupled with global segmentation: It blocksthe clustering of
potential morphological variants which have never co-occurred in a docu-
ment. This boosts precision. We are still examining why on smaller data sets,
document based segmentation and clustering show strong precision in spite
of the fact that step (1) may generate noisy candidates.

It remains to be seen how useful the output from these models is for cre-
ating interlinear glossed texts as part of an overall language documentation
process. However, manual evaluation by Kaan of the output ofour model is
encouraging. She measured the accuracy of 100 random morphological clus-
ters produced by the model for Uspanteko and found individual clusters to be
98.5% accurate on average, with complete accuracy on 79.0% of all clusters.
(Taesun) Linguistica had accuracy of 96.0% and 85.0% full cluster accuracy.
Morfessor had 85.3% accuracy and 55.0% full cluster accuracy. See Moon
et al. (2009) for more details on the model and evaluation. More extensive
evaluation needs to consider two factors: (1) the effect of automatic prepro-
cessing on annotation speed; and (2) the effect on annotation consistency and
correctness.

Another possible extension concerns the question of pipeline-style pro-
cessing versus integrated models. In the process of IGT creation, we are cur-

17Note that both were used with default parameters and that Morfessor was not used for its
intended purpose of pure segmentation.
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rently considering morphological analysis (section 3) andpart-of-speech tag-
ging (section 4) completely separately. The two processes ideally inform each
other, but it is open whether the advantages gained by this information could
outweigh the added complexity of an integrated model.

4 Semi-automated annotation
The previous section discussed anunsupervisedmodel for preprocessing a
corpus to suggest morphological variants and analyses. In this section we dis-
cuss models that receivesupervision, i.e., they learn from previously given
human annotation. The amount of material which gets annotated is often
limited by the money available for annotation. In the language documenta-
tion scenario, there is the additional hard constraint of time running out—for
severely-endangered languages there may be no more than a small part of one
generation still using the language, and before long there may be no more liv-
ing knowledge of the language.

This section considers how a machine learning system caninteract with
an annotator to efficiently improve its accuracy such that itcan be used for
reliable labeling of new material. When annotation is done,we seek to have
a corpus which is maximally useful for training an accurate classifier that can
label further material reliably. This relies on two aspectsof machine learning
systems which have little supervised (i.e. human-labeled)training data: (1)
not all examples are equally valuable to machine learners and (2) even when
a machine learner is unsure on an example, it often assigns a high probability
to the correct label, compared to probabilities for all other possible labels.

In Palmer et al. (2009) and Baldridge and Palmer (2009), we describe a
series of annotation experiments designed to test the viability of exploiting
these two aspects to speed up morpheme gloss labeling. The practical goal is
to explore best practices for using automated support to create fully-annotated
texts. The aim is to achieve the highest quality possible within fixed resource
limits. Palmer et al. (2009) describes our data preparationand initial results
for the use of active learning on the task of morpheme glossing. Baldridge and
Palmer (2009) gives a detailed comparison of different strategies and condi-
tions in terms of their relative effectiveness. Here, we provide a few details
not covered in those papers and summarize the experiments and results.

4.1 Active learning

Active learning has one core driving principle: we should use our human ex-
perts as effectively as possible, so we should avoid asking them for labels
for easy examples. Examples which present some novelty are likely to help a
machine learner improve its performance more quickly. In brief, active learn-
ing attempts to maximize the impact of human annotation timeby identifying
informative examples for the human to annotate. In one common active learn-
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ing scenario, a machine-learned model is initially trainedon a minimal set of
annotated seed data. The learned model is then used to analyze a large set
of previously unseen examples, a set of maximally-informative examples is
selected from this pool, and the selected set is annotated bya human and
added to the training data. The model is then retrained on theseed set plus the
newly annotated examples, and the cycle repeats. With respect to the need for
labeled data, active learning is well-suited for the language documentation
context, in which it is common for a project to produce a smallamount of
IGT-annotated data and a much greater amount of unannotateddata.

The active learning method we use is uncertainty sampling (Cohn et al.,
1995). Uncertainty sampling identifies examples the model is least confi-
dent about. Intuitively, if the model believes all possibleanalyses are more
or less equally likely, it cannot confidently select one label over the others.
The model’s low confidence level indicates that it has not hadenough expe-
rience with that type of data to make an informed decision. Selecting high-
uncertainty examples for annotation thus is intended to maximize the amount
of new information provided for learning during each cycle.

We compareuncertainty selection against two baseline methods:sequen-
tial and random. For reasons of coherence and the importance of context,
the default annotation procedure in language documentation is sequential se-
lection. So it is important for us to compare our learner-guided selection
to business-as-usual, even though random selection generally works better.
However, sequential selection is generally sub-optimal, particularly for cor-
pora with contiguous sub-domains (e.g. texts from different genre), because it
requires annotation of many similar examples in order to getto examples that,
due to their novelty, are likely to help a learned model generalize better. Ran-
dom selection requires no machine learning but typically works much better
than sequential selection. Random avoids the sub-domain trap by sampling
freely from the entire corpus, and it provides a strong baseline against which
to compare learner-guided selection, such as uncertainty sampling.

4.2 Label suggestions

The idea of using label suggestions is quite straightforward: the model ranks
the possible labels which it might assign to a morpheme, and the annotator
uses that ranked list rather than the full, uninformative list of all possible
labels, to come to a determination more quickly. Ideally, the right label is
ranked at the top of the list and is thus the first label provided, meaning the
annotator just needs to spot-check the model output.

Our experiments consider two conditions for providing classifier labels: a
do-suggest(ds) condition where the labels predicted by the machine learner
are shown to the annotator, and ano-suggest(ns) condition where the an-
notator does not see the predictions. Theds cases show the annotator the
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most probable label according to the most-recently-learned model, as well as
a ranked list of other highly-likely labels.18 In thens cases, the annotator is
shown a list of labels previously seen in the training data for the given mor-
pheme; this list is ranked according to frequency of occurrence. Note that
this is a stronger no-suggest baseline than one which simplylists all labels in
alphabetical order. Providing the list of previously-seenlabels in thenscondi-
tions is intended to mirror an annotator’s interaction withShoebox/Toolbox,
making for a better comparison. It is also extremely likely that ranking by
frequency helps considerably in determining the correct label.

4.3 Annotators and (lack of) annotation conventions

The annotations in the experiments were performed by Campbell and Kaan.
Both are trained linguists who specialize in language documentation and have
extensive field experience. Both are fluent speakers of Spanish, the target
translation and glossing language for the OKMA texts.

Kaan has done extensive linguistic and lexicographic work on Uspanteko.
Her work includes a written grammar of the language (Kaan Pixabaj et al.,
2007b) and contributions to the publication of an Uspanteko-Spanish dic-
tionary (Vicente Méndez, 2007). Additionally, Kaan is a native speaker of
K’ichee’, a Mayan language that is closely related to Uspanteko.

Campbell is a doctoral student in language documentation whose work
focuses on indigenous languages of Mesoamerica, particularly Chatino and
Zapotec. At the start of the annotation studies, Campbell had no previous ex-
perience with Uspanteko and only limited prior knowledge ofthe structure of
Mayan languages. He had access to the Uspanteko-Spanish dictionary during
annotation, but not to the grammar.

These two annotators were chosen specifically for their different levels
of expertise in the language. The time of a linguist with language-specific
expertise is one of the most valuable resources for producing IGT, and our
experiments touch on the question of how to most efficiently use that re-
source in the annotation process. But documentation projects often also (or
sometimes instead) draw on the time of a linguistwithoutprior experience in
the language. We compare the relative effectiveness of machine support for
these two different types of annotators and find evidence that expertise does
influence which selection strategies are most effective.19

A factor related to expertise is that not all annotators costthe same. For
example, the most knowledgeable and possibly most efficientannotator might

18To appear on this list, a label must be at least half as probable as the best label.
19It should of course be noted that one annotator per type, as wehave in these studies, is too

small a sample to draw generalizable conclusions. Our results are suggestive but not conclusive.
At the same time, the two-annotator scenario accurately reflects the resources available to many
documentation projects.
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well be the most costly or have the most limited time (which has the same
effect, for language documentation). This sort of factor would ideally inform
an active learning process, though we do not address it here.

A similarity of our setup to a typical documentation projectis the absence
of a detailed annotation manual. Annotation in language documentation is
itself a process of discovery. Analyses change as annotation proceeds, and
annotation conventions necessarily change along with them. Even without
strict guidelines, though, annotators need to have some sense of common con-
ventions, and in particular our annotators needed to have some sense of the
conventions of the original OKMA annotations. To this end, we use a new
annotator training process.

Two seed sets of ten clauses each were selected to be used bothfor human
annotation training and for initial training of the machinelearners. In separate
sessions, each annotator was given these morpheme-segmented clauses to la-
bel, one set of ten at a time. The labels were compared to the original OKMA
labels, and results indicating which matched and which did not were shown.
The annotator’s task was to relabel all incorrect labels, iterating the process
until the two sets of labels matched completely. In cases where the annotator
made 5–7 consecutive incorrect guesses, the correct label was provided.

4.4 Annotation tool

To evaluate the effectiveness of machine support in these different conditions
requires integrating automated analysis into the manual annotation process.
The integration in turn requires careful coordination of three components: 1)
presenting examples to the annotator and storing the annotations, 2) train-
ing and evaluating tagging models using data labeled by the annotator, and
3) selecting new examples for annotation. Since no existingannotation tool
directly supports such integration, we developed a new tool, the OpenNLP
IGT Editor20, to manage the three processes. The annotation component of
the tool, and in particular the user interface, is built on the Interlinear Text
Editor (Lowe et al., 2004).21

An example of annotating a clause with the IGT editor is givenin Fig-
ure 2. The editor window displays the static tiers of the IGT annotation for
the clause; these are the TEXT, TRANS, and MORPH lines. The first two ap-
pear in the upper left window of the editor. The individual morphemes are
presented for labeling in the window below, grouped by word,with a sepa-
rate gloss field for each morpheme.

This particular example shows the state of the editor as an annotator la-
bels the first morpheme of a clause in one of theds conditions. The clause
initially displays with the gloss fields populated by the most-likely label for

20http://igt.sourceforge.net/
21http://michel.jacobson.free.fr/ITE/index en.html
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Figure 2: The OpenNLP IGT Editor interface.

each morpheme, as determined by the learned classification model. In this
case, the annotator has not immediately accepted the machine’s label sug-
gestion and instead seeks to choose a different label. The label choices ap-
pear in a drop down menu for the gloss field. The first three items on the
menu—COM,VOC, andINC—are label suggestions from the machine, ranked
by decreasing likelihood. The rest of the label set is accessible through the
alphabetically-organized menus appearing below the labelsuggestions. Ev-
ery label in the pre-determined label set is available for every morpheme, but
a few have been highlighted by the machine as more likely choices. One ad-
vantage of using a fixed label set presented in drop down menusis that it
prevents label inconsistencies by not allowing free input.

The annotation tool also measures and logs the time taken to annotate each
individual clause, and the menu bar at the bottom of the editor window both
tracks progress through the batch of clauses (shown by the2/10counter) and
gives the annotator the ability to stop timing in order to take breaks. When
the annotator hits theStopbutton, though, the screen greys out and the clause
is no longer visible. The editor also allows free movement between clauses
in the batch, but no revision is possible once the annotations for the batch
have been finalized. The final point to note is theFlag annotationcheckbox
at the bottom center of the window. In an ideal tool, the annotator would be
able to change segmentations as well as making gloss label decisions, but
the OpenNLP IGT Editor does not offer that flexibility. As a compromise, the
checkbox allows the annotator to flag clauses with problematic segmentations
and/or analyses for later inspection. The editor processesIGT-XML, and the
set of flagged clauses is easily retrievable from the XML files.

An additional requirement was that the editor interface hadto be intu-
itive and easy-to-use. Anticipating and handling the users’ needs, particularly
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Figure 3: Accuracy on previously-unseen morphemes for bothannotators,
seq vs.unc.

those of the non-computationally-savvy user, added significantly to the devel-
opment time. Yet still some human-computer interaction issues turned out to
hurt performance (in terms of accuracy per the amount of timespent) for both
the learned models and the human annotators. This is discussed in greater de-
tail in section 5.

The OpenNLP IGT Editor is available under the open source Lesser Gen-
eral Public License.22 We hope that it will enable the language documentation
community to take advantage of our tools and techniques.

4.5 Findings

One of the biggest findings—one which we fully expected—is that it is im-
perative to measure cost in terms of time rather than using a unit cost. This
is crucial since unit cost is the standard practice in activelearning studies
(which are almost entirely simulation studies). Measuringcost in terms of
morphemes indicated that Campbell (the annotator without Uspanteko lan-
guage expertise) was the most effective annotator, but thisresult reversed

22http://www.gnu.org/licenses/lgpl.html
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when the time used to annotate was taken into account: with time cost, Kaan
produced datasets that trained more accurate classifiers much more quickly.

The second, more surprising, finding is that uncertainty selection worked
well with Kaan, but it performed worse than random selectionwith Campbell.
This indicates that language (or domain) expertise mattersin using active
learning. In particular, it indicates that we must develop methods that model
not only how useful any given example is likely to be (e.g., using uncertainty),
but also how well and how quickly a given annotator is likely to annotate it.
There has been very little work on annotator-aware selection strategies in
active learning research so far (although see (Donmez and Carbonell, 2008)
and (Arora et al., 2009)), yet it is clearly essential if active learning is to be
an effective technique in real-life annotation projects.

This discussion of selection strategy effectiveness pertains to the accuracy
of the learned model in labeling all words in the corpus, but this is just one
way to measure the adequacy of the models and of the entire labeled set. For
example, improved performance on uncommon constructions might be more
important than overall high accuracy on the common cases. Figure 3 shows
that prediction of labels for unseen morphemes gets a particularly large boost
from active learning. This is highly relevant for language documentation: a
major goal is to analyze the long tail of words/constructions in the language
that may not be common but are linguistically interesting. Here uncertainty
selection shines in our experiments for both annotators in all conditions.

The third major finding is that label suggestions provided bythe machine
were useful for Campbell but not for Kaan. Campbell found thesuggestions
useful for limiting the likely analyses for a given morpheme, whereas Kaan
initially found them to be a distraction and only paid attention to them later
on in the annotation when the machine’s predictions had become more accu-
rate. However, these results were somewhat confounded. Theway that label
suggestion was implemented unexpectedly made it harder at times for the an-
notators to locate the label they wanted to select. The primary observation
on label suggestions, then, is that it is probably most important to consider
the interface design when hoping to allow machine suggestions to speed up
annotation. The other, unsurprising, observation is that machine label sugges-
tions should only be provided after the machine is sufficiently accurate. This
suggests that there should be studies on measuring when a machine classifier
is sufficiently accurate to begin suggesting labels (this isnot a trivial thing to
do, since there is no evaluation set available).

In summary, the standard strategy of sequential annotationwith no input
from a machine learner is outperformed by some configurations of learner-
guided example selection and machine label suggestions. However, annota-
tors with different levels of expertise may find different strategies to be more
or less effective when it comes to quickly and efficiently producing a fully-
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labeled corpus of a given accuracy. The impact of differences between an-
notators indicates that in order to reliably obtain cost reductions with active
learning techniques, annotators’ fallibility, reliability, and sensitivity to cost
must be modeled (Donmez and Carbonell, 2008). The results also bring into
focus the uncertainty regarding how well active learning works in practical
applications. This is particularly important in the language documentation
context, where software support for documenting languageshas to be robust,
flexible, easy to learn, and straightforward to use.

5 Interaction of annotators with machine decisions

A key part of our approach to reducing annotation cost is to integrate ma-
chine support and manual annotation. In this case, the annotations provided
are labels for morphemes in IGT, and the annotators are two documentary
linguists with extensive field experience. The annotators worked in a number
of different experimental settings with different levels of machine support,
which comes in the forms of both active learning and machine label sug-
gestion. The annotators found both advantages and disadvantages to working
with machine assistance. Also the two annotators differ greatly with respect
to their previous experience with Uspanteko, and the different levels of ex-
pertise had a strong effect on which levels and types of machine support were
most helpful.23 These attributes also changed as annotation progressed and
the annotators progressed along their own learning curve.

5.1 Learning curve

In any annotation project, annotators go through an initialphase during which
they become familiar with the data, the annotation guidelines and the an-
notation interface. During this phase, per-label annotation time is generally
higher than it is later in the process, and mistakes and inconsistencies are
more likely to occur. While Kaan’s annotation times line up with this typical
case, Campbell’s learning curve is much steeper; in addition to familiariza-
tion with guidelines and interface, Campbell is in fact discovering the nature
of the language as he goes.

As expected, Kaan’s learning curve reached a plateau far quicker than
Campbell’s. Her learning process consisted primarily of remembering as-
pects of the earlier analysis of Uspanteko (i.e. the analysis reflected in the
grammar), noting subsequent changes in analysis, and resolving some incon-
sistencies in her labeling choices. Campbell, starting from zero, needed much
more work to acquire proficiency with the language and task. This is reflected
especially in his average annotation time per morpheme, shown in Figure 4.

Campbell noted clear patterns in his acquisition of a syntactic model for

23As a reminder, Kaan is the language-expert, and Campbell is the language-novice.
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Figure 4: Average annotation time (in seconds per morpheme)over annota-
tion rounds, averaged over all six conditions for each annotator.

the language: verbs became clear first, because in Uspantekoonly verbs take
aspect marking. Person marking was the key to his next major step, which was
the identification of relational nouns and possessed nouns,both of which in-
flect with the ergative person markers (set A in traditional Mayan linguistics).
Adjectives were the third major area in which he felt confident of his labels,
since almost invariably they immediately precede the nounsthey modify. The
most difficult distinctions, in his opinion, were sentence-initial morphemes,
variously labeled as adverbs, particles, or affirmatives.

A complicating factor for both annotators is that the data marks both
derivational and inflectional morphology, but the former isnot consistently
analysed as such. In other words, in some cases the segmentations take deriva-
tional morphology into account and in others they do not.

Access to the Uspanteko-Spanish dictionary was essential for Campbell to
make any progress understanding the language. In fact, he found simultane-
ous use of the digital and printed versions of the dictionaryto be the most
effective strategy. The digital version allows the use of targeted search terms,
while the hard copy lets the user rapidly scan many pages of entries (and their
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examples) to get a broader picture of the language. At the same time, a dic-
tionary as a stand-alone resource is of course not sufficientfor developing a
comprehensive knowledge of the linguistics of a language.

5.2 Annotator label accuracy

In section 4, the effectiveness of different levels of machine support was dis-
cussed with respect to the labeling accuracy of models learned from the train-
ing data produced by the annotators. Accuracy of a model is evaluated by
comparing its label predictions to the original (i.e. OKMA)annotations on
a set of held-out texts. Thus the potential for learning an accurate model is
affected by the accuracy of the annotators’ labels as compared to the original
annotations.

Accuracy against OKMA annotations. Table 4 shows the overall accuracy
of the annotators’ labels for each condition (after 56 rounds) as measured
against the original OKMA annotations. As expected,unc selection tends to
pick examples that are more difficult to label. Accuracy for both annotators
suffers in bothunc-nsandunc-ds.

The fact that Campbell’s accuracy is generally higher than Kaan’s is ini-
tially surprising; this is another result which highlightsthe differences and
challenges that arise when we bring active learning into non-simulated an-
notation contexts. We attribute this result to two different factors. The first
is the speed of annotation; Campbell spent nearly twice as much time label-
ing the same number of examples. The more important factor, though, again
has to do with prior experience with Uspanteko. In language documentation,
the analysis of the language is continually evolving. The OKMA annotations
represent less a ground truth for the language than a reflection of the under-
standing of Uspanteko at the time that the original annotations were done.
Kaan recognized—often through the morphological segmentation shown by
the annotation tool—several linguistic phenomena for which the analysis has
changed since the close of the project that resulted in the grammar, the dic-
tionary, and the corpus.24 As a result, her labels in cases diverge from those
of the original corpus.

Annotator accuracy by round. Though annotator speed clearly improves
over time, the same correlation does not hold for the accuracy of the annota-
tors’ labels. Figure 5 plots annotator label accuracy by round of annotation.25

Despite showing lower label accuracy, faster annotation rates allowed Kaan
to achieve higher accuracy in much less time.

24This is the main reason for providing the ‘Flag annotation’ checkbox as part of the annotation
tool interface.

25The left terminus of each plot line is artificially high, as itplots the accuracy of the 10-clause
seed set, which is drawn directly from the OKMA data.
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expert non-expert
seq-ns 73.17% 75.09%
rand-ns 69.90% 74.37%
unc-ns 61.23% 60.04%
seq-ds 67.48% 73.13%
rand-ds 68.34% 73.03%
unc-ds 59.79% 60.27%

Table 4: Overall accuracy of annotators’ labels, measured against OKMA
annotations.

(a) (b)

Figure 5: Single round accuracy per round for each experiment type by: (a)
expert annotator (Kaan), (b) non-expert annotator (Campbell).
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The ESP error. Another significant source of divergence for Kaan from the
OKMA annotations arises from one individual label. During the clean-up pro-
cess, the labelESP was introduced for labeling Spanish loans or insertions
(such as the adverb/discourse markerentonces). It gradually became clear
that such tokens are very inconsistently labeled in the original corpus, usually
with catch-all categories like particle or adverb. For example, the Spanish
loannomas(segmented, perhaps controversially, asno-mas) often seems to
function as an adverb in Uspanteko clauses (e.g. (8); text 057, clause 209).

(8) jii’n kila’ qe nomas
Si alli nada m̀as.

In this case, the OKMA standard glosses both morphemes as adverbs (ADV),
Kaan labels both withESP, and Campbell provides a split labeling, attempt-
ing to capture the function of each morpheme:NEG-ADV. Arguments can be
made for each of the three labelings.

Further analysis is needed to determine the role such words play in the
clauses they appear in: are they the product of code-switching? Do they par-
ticipate in the syntax of Uspanteko? Because this question remains unre-
solved, and in order not to influence the predictions of the machine learner
with spurious label assignments, the decision was made to mark the tokens
simply as being of Spanish origin. Example (9) (text 068, phrase 110) con-
tains two examples of this type of word—tonsesandpwes—along with each
annotator’s labels for the clause.

(9) TEXT: tonses wiyn pwes in ajnuch’ na+

MORPH:
KAAN :
CAMP:

tonses
ESP
ADV

wiyn
???
EXS

pwes
ESP
ADV

in
A1S
PRON

aj-nuch’
???-ADJ
GNT-ADJ

na
PART
PART

Entonces yo pues hera pequeña.

Over time, the two annotators developed very different conventions for using
theESP label. Kaan applied it to 2086 of 24129 tokens (8.65%) and Camp-
bell applied it to only 221 of 22819 tokens (0.97%). Because the label was
introduced well after the OKMA corpus was completed, it doesnot appear at
all in the original annotations, so any token labeledESP is scored as incor-
rect when compared to the OKMA annotations; this alone adds more than 7
percentage points to Kaan’s total label error.

5.3 Annotator agreement

To get a more complete picture of the effectiveness of different levels of
machine support, it is important to evaluate each annotator’s accuracy not
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P
P

P
P

P
non

exp
seq-ns rand-ns unc-ns seq-ds rand-ds unc-ds

seq-ns 69.91% (523) 70.82% (42) 62.42% (48) 72.35% (54) 74.25% (28) 67.82% (47)
rand-ns 71.32% (48) 83.94% (39) 66.56% (47) 66.15% (43) 73.75% (42) 67.55% (52)
unc-ns 66.31% (48) 67.87% (53) 62.31% (301) 58.87% (51) 73.31% (40) 61.10% (298)
seq-ds 73.35% (60) 75.56% (34) 56.39% (37) 60.02% (540) 66.00% (44) 61.01% (36)
rand-ds 68.67% (50) 76.40% (63) 66.67% (58) 65.88% (47) 76.33% (42) 66.99% (64)
unc-ds 65.41% (50) 67.98% (55) 60.43% (263) 58.13% (38) 70.74% (57) 60.40% (275)

Table 5: Inter-annotator agreement: expert v. non-expert,percentage of mor-
phemes in agreement, (number of duplicate clauses)

only against the OKMA annotations, but also against each other and even
against themselves. Because each of the twelve settings (annotator-selection-
suggestion) used examples selected from the same global pool of unlabeled
examples, some duplicate clause annotation occurred for each pair of exper-
imental conditions. Multiple labelings of a clause allow usto take simple
agreement measures of both inter-annotator agreement and intra-annotator
consistency.

Inter-annotator agreement. Table 5 shows agreement between annotators,
measured in percent agreement on morphemes in clauses labeled by both an-
notators. The column headings refer to Kaan’s experiments,the row headings
refer to Campbell’s, and the number in parentheses is the number of duplicate
clauses for that pair of annotator-selection-suggestion conditions. The overall
average inter-annotator agreement for duplicate clauses was 66.56%. This is
another indicator of the divergence from the OKMA standard analyses noted
in section 5.2, for Kaan in particular.

Note that the sets of clauses selected for the four pairings of uncertainty
selection cases show a very high level of duplication. Not surprisingly, the
level of agreement for theunc-unc pairs is consistently well below the over-
all average agreement, with an average agreement of just 61.06%. This find-
ing supports the expected result that uncertainty-based selection does indeed
select clauses that are more difficult for human annotators to label.

Intra-annotator consistency. The differences between annotators also ap-
pear when we consider the consistency of each annotator’s labeling decisions.
Table 6 and Table 7 (expert and non-expert, respectively) show, for each
pair of experimental conditions, the percentage of morphemes labeled consis-
tently by that annotator. Kaan’s overall average percent agreement (88.38%)
is higher that Campbell’s (81.64%), suggesting that she maintained a more
consistent mental model of the language, but one that disagrees in some areas
with the OKMA annotations.
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P
P

P
P

P
exp

exp
seq-ns rand-ns unc-ns seq-ds rand-ds unc-ds

seq-ns —
rand-ns 95.00% (41) —
unc-ns 87.10% (56) 90.91% (57) —
seq-ds 92.39% (60) 87.57% (35) 81.35% (41) —
rand-ds 91.02% (28) 90.94% (50) 89.10% (46) 86.13% (42) —
unc-ds 88.83% (51) 89.53% (57) 87.82% (332) 82.14% (42) 87.06% (49) —

Table 6: Intra-annotator consistency, expert annotator

P
P

P
P

P
non

non
seq-ns rand-ns unc-ns seq-ds rand-ds unc-ds

seq-ns —
rand-ns 90.11% (49) —
unc-ns 80.80% (44) 81.68% (54) —
seq-ds 90.00% (54) 87.94% (44) 77.97% (48) —
rand-ds 90.15% (52) 86.64% (45) 79.46% (62) 81.43% (44) —
unc-ds 84.15% (47) 78.55% (52) 77.68% (328) 78.81% (35) 77.95% (60) —

Table 7: Intra-annotator consistency, non-expert annotator

5.4 Reflections on the annotation experience

Glossing the Uspanteko texts is a tagging task. In that respect the annota-
tors had the usual role of providing labels for items proffered for annotation.
However, in these experiments annotation occurs in coordination with ma-
chine learning. In some settings the items to be labeled wereselected by the
machine, guided by the previously supplied labels. So, in the active learning
cases, the annotator’s labels affected which examples wereselected: in this
way, the annotator and machine labeler are tightly coupled.Here, we consider
the utility of the annotation tool and the semi-automated annotation process
from the perspective of the annotators.

Annotation tool. Folding machine learning into an annotation tool raises
some interesting issues. For example, when offering label suggestions to the
annotators, the OpenNLP IGT Editor presents the labels in a separate list, as
seen in Figure 2, but removes the suggested labels from the alphabetically-
ordered drop-down bank of possible labels. Both annotatorscommented that
the resultant change in the ordering of the labels at times slowed down the
labeling process, as they could not rely on their memory of the position of the
labels within the drop-down bank.

Other issues were raised by the facts that the tool was limited to handling
one stage of the process of producing IGTandthat the tool was designed for
specific experimental purposes. This restriction forces the annotators to ac-
cept the morphological segmentation as offered. The one concession made in
the tool design was to offer a checkbox for flagging examples that needed fur-



32 / L I LT VOLUME X, ISSUEY NOVEMBER 2009

ther examination. The most common reason for flagging, by far, was to mark
clauses with segmentation errors. In order to get accurate time measurements
for labeling, it was necessary to cut out any additional analytical tasks, but in
a working documentation project, this feature would likelyhamper the effi-
ciency of the annotators. Both annotators also noted that they would like to
have access to the lexical gloss for stems (i.e. the stem translation) as well as
the part-of-speech labels. These limitations are perhaps the main obstacles to
this tool being useful in the early stages of a documentationproject.

Labeling-retraining cycle. Active learning is inherently cyclical: (1) a
model is trained, (2) examples are selected, (3) examples are labeled; (1)
the model is retrained, and so forth. In simulation studies,steps (1) and (2)
tend to be time- and compute-intensive, and step (3) is trivial. This changes
of course when we use real annotators, when step (3) becomes the most time-
consuming step of the process. There is, however, still a time cost associated
with steps (1) and (2), and the annotator generally has to wait while those
steps are completed and a new batch of examples is selected for labeling.
This lag time may cause frustration, distraction, boredom,or even a much
needed break for the annotator.

In addition, waiting time needs to be treated as part of the time cost of
annotation. We did not take this into account in our experiments. However,
aspects of both the experimental design and the implementation of the an-
notation tool combine such that annotator lag time is nearlyconstant across
annotators and across experimental conditions, thus minimizing the impact of
waiting time on our results.

First, for each annotator we alternate between experimental conditions, in
order to mitigate the effect of the annotator’s learning curve. Each selection-
suggestion strategy combination is set up as a separate experiment, and ex-
amples are selected in batches of 10 clauses. In each round ofannotation,
the annotator labels a total of 60 clauses, 10 for each experimental condition.
The annotation tool is designed to work on one experiment at atime, so to
switch experiments the annotator restarts the tool and is prompted to select
the desired experiment. (Note that the annotators were unaware of the specific
experimental conditions for each set.) Thus, experiment-switching time is the
same for all experiments. Second, our models are simple, andthe training set
consists of only those clauses already labeled by the annotator, so the models
train quickly.

Steps (1) and (2) can occur either immediately before or immediately after
the batch of clauses has been labeled, and the sequence is determined by the
annotator. This provides the annotator at least a small amount of control, so
he/she can either proceed directly to the next experiment orwait out the short
training time before switching. Also, due to the order of thesteps, the model
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training feels more like a part of the active switching process and less like
passive time sitting and waiting for the machine to finish.

Iterative model development. With a setup that gives annotators access to
the predictions of the classifier, it is important to ask to what extent the anno-
tators are influenced by seeing those predictions. Here we found quite differ-
ent responses from the two annotators.

Kaan noted that the machine’s accuracy seemed to improve over time, and
that bad suggestions from the machine sometimes slowed her down, as she
had to wade through a number of wrong labels to get to the labelshe wanted.
She also noted that at some points she found herself accepting the machine’s
suggested label in the case of homophonous morphemes and later rethought
the label, though too late to make any changes. In other words, the appearance
of one of two or more possible labels for a morpheme in some sense put the
other possible choices out of mind. Once she noticed this happening, she
started taking more care with such cases. We note that these are precisely the
kinds of cases for which the machine needs additional training data to learn
to distinguish the two different analyses for the morpheme.Such a conspiracy
between the annotator and the model can easily push the modeloff track.

Campbell had a more complex relationship with the machine learner. Near
the beginning of the annotation process, seeing the machinelabels was actu-
ally a hindrance, compared to the no-suggest cases, in whichCampbell was
shown the labels he had previously assigned to the given morphemes. This
being a hindrance is a function of the annotator’s own learning process. In the
beginning, he spent quite a lot of time selecting a label for each morpheme,
consulting the dictionary extensively and thinking a lot about the likely role
of the morpheme. In other words, he was deeply engaged in linguistic anal-
ysis. Thus he trusted the labels he had previously chosen butdid a lot of
second-guessing and rechecking of the suggestions made by the machine. In
the future, it would be helpful to highlight machine suggestions when they
correspond to labels seen with previous occurrences of the morpheme.

Later in the annotation process, as the model began to make more accu-
rate predictions more consistently, he began to trust the machine suggestions
much more, provided they were consistent with his own current mental syn-
tactic model for the language. Once Campbell trusted the machine labels to a
greater extent, having access to them saved a lot of time by reducing (often to
zero) the number of clicks required to select the desired label. Interestingly,
Campbell grew to be quite aware of the varied model accuracy in the differ-
ent experimental settings. In fact, though he didn’t know this, his impression
of the most accurate model is indeed the same as his best-performing model
(random selection with machine labels).
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Epiphany effect. Without having knowledge of the accuracy of the mod-
els trained on his labels, Campbell commented on having several points of
‘epiphany’ after which he had an easier time with the annotation. These were
points at which he resolved his analysis of some frequently-occurring aspect
of linguistic analysis, and these discoveries show up as bumps in graphs chart-
ing the performance of the models trained on his data.

Campbell found it hard to keep track of all the changes he was making
all along in his mental model of the Uspanteko grammar. It appeared to him
that some of the periods where it seemed the machine was slipping could
have in fact been cases of it no longer matching his analysis.Also, he did not
know how long it would take for the machine’s predictions to stabilize after
changing his analysis of something. Would it weight his later tags greater than
his earlier tags? Would an an erroneous analysis early on mean it would would
take a while for the machine to amass enough correctly glossed tokens of such
a morpheme to outweigh all of the incorrectly glossed tokens? Clearly, it
would be useful to have some transparency in terms of the history of analysis
of certain morphemes or constructions and also the ability to explain why a
model is making a decision one way or another.

Handling changes in analysis.Language documentation involves both pre-
serving examples of a language in use and discovering the nature of the lan-
guage through ongoing linguistic analysis; the process does not at all fit a
pipeline model. Both annotators noted changes in their analyses of partic-
ular phenomena as they proceeded with annotation. In fact, each annotator
discovered a previously-unknown aspect of the morphosyntax of verbs in Us-
panteko. In some cases, a jump in model accuracy followed an epiphany in
the annotator’s own model of the language.

A deficiency of our annotation tool, and indeed a challenge for any tool
used to aid production of IGT, is that it does not allow the annotator to rean-
notate previous clauses as the analysis changes. One possible approach would
be to couple global search (i.e. search of the entire previously-annotated cor-
pus) with a reannotation function. This would allow an annotator to view a
concordance of clauses containing the morpheme in questionand to pick and
choose which of the labels should be changed.

One such example concerns the morphemesli andri . Both function some-
times like prepositions and sometimes like demonstratives. Campbell began
the experiment glossing all instances of both morphemes as prepositions. At
some point he switched to labeling them all as demonstratives, and finally, af-
ter about 30 rounds of annotation, he began to distinguish the two functions.
Kaan also noticed an increase in her accuracy and consistency over time.
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6 Conclusion

Based on the results of the work and experiments described inthis paper, we
believe there is clear potential for fruitful, mutually beneficial collaboration
between language documentation and computational linguistics.

Challenges and benefits for language documentation.Documenting and
describing an endangered language is a complex task with no clearly estab-
lished best methodology or workflow.26 Each language offers its own set of
challenges, and each documentation project tends to develop its own set of so-
lutions. An additional confound to consistency in the documentation process
is the fact that most such projects are individual or small-group endeavors on
small budgets, with little or no institutional guidance by the greater documen-
tary linguistics community.27

Even very simple computational strategies, such as basic scripting for text
manipulation and data management can be very effective in efficiently im-
proving the quality and consistency of transcriptions, translations, and IGT
annotations from language documentation projects. Much ofthe work of doc-
umentation is data-intensive and corpus-based, and many ofthe problems en-
countered could greatly benefit from knowing a scripting language such as
Perl, Python or Ruby. In addition, these skills and use of standard formats
both greatly increase the reusability of such data.

Machine learning and active learning approaches, while certainly more
complex and more challenging to implement, show some promise for par-
tially automating and thus speeding up the creation of IGT. Using machine
assistance, we consistently learned more accurate models,more quickly, than
was possible using the standard strategy of sequential annotation with no ma-
chine label suggestions. These learning methods need inputdata that is in a
well-organized and machine-readable format, but they alsooutput this type
of data, supporting the possibility for future work on language technologies
for the language being documented.

Challenges and benefits for computational linguistics.Questions arise in
the context of documentary linguistics that present interesting challenges for
computational linguistics. IGT creation is actually a bad fit for the standard
pipeline model frequently used in computational linguistics, because the dif-
ferent stages of analysis—morphological analysis/segmentation, labeling of
morphemes, and sometimes even translation—overlap. Another challenge is
the absence of strict annotation guidelines; both analysisand annotation are

26Although strong recommendations exist for ensuring the longevity and robust accessibil-
ity of digitized language data; see for example Bird and Simons (2003) and the results of the
EMELD projecthttp://emeld.org.

27Some personal perspectives on the difficulties faced by suchprojects can be found in New-
man (1992), Wilkins (1992), Rice (2001).
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continually evolving, each informing the other.

Some of the challenges we encountered raise important considerations for
direct practical application of machine learning and active learning. First, the
interactions between the human annotator and the machine learner are very
complex and must be carefully considered and thoroughly addressed for ef-
fective integration of the two. In other words, unanticipated human factors
can diminish the potential effectiveness of input from the machine learner.
Second, for active learning to be effective, some sort of model of the anno-
tator needs to be incorporated into example selection strategies. Finally, it is
important that annotation software be flexible enough to allow for revision as
the analysis of the language changes; at the minimum, computational support
can assist with propagating such changes back to previously-labeled clauses.

Research in computational linguistics also stands to benefit from expand-
ing the range of languages it works with. Standardized, machine-readable
IGT annotations for less-studied languages and the diversephenomena they
exhibit would enable a much wider cross-linguistic validation of models used
in computational linguistics. Also, machine learning techniques have mostly
been used in scenarios where large volumes of data are available. There is
thus an opportunity to evaluate the impact of models that assume less training
material, e.g. through linguistically informed priors.

Infrastructure. Creating the necessary software infrastructure to build an
active learning system is a substantial hurdle. Creating our annotation tool to
interface between data, annotator, and machine classifier required consider-
able effort, especially to ensure it was easy to use for the annotators. If ma-
chine learning is to be of any assistance to language documentation, beyond
individual projects such as ours, it is clear that a basic digital infrastructure
is necessary, and that this infrastructure must take into account both machine
and human factors.

We envision a broadly-accessible, web-based system for collaborative an-
notation of texts, possibly based on the model used with Amazon’s Mechan-
ical Turk (AMT). Using AMT, labels can be obtained for a fraction of the
usual cost by parceling out instances to self-selected non-expert annotators.
AMT labels have been found to show high agreement with pre-determined
gold-standard labels for some natural language processingtasks, such as af-
fect recognition and recognizing textual entailment (Snowet al., 2008). By
definition, though, AMT labels are non-expert labels and so not likely to be
useful for work in language documentation. Nevertheless, AMT stands as an
example of the potential for massive, global collaborationon tasks involv-
ing textual data. With an AMT-like system specifically targeted for IGT and
involving a community of documentary linguists as annotators, the documen-
tation process could be sped up significantly.
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Though we envision this system as facilitating collaboration not just be-
tween many humans, but also between humans and machines, it is abundantly
clear that the machine learner must be tuned to the needs of the human. Ques-
tions of human-computer interaction must be carefully considered, the learner
must model what the humanactuallydoes, and the human must always retain
veto power.
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